Skip to main content

microRNA and NF-kappa B

  • Chapter
microRNA: Basic Science

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 887))

Abstract

Nuclear Factor kappa B (NF-κB) plays important roles in regulation of countless cellular functions, including cell cycle and apoptosis. As a versatile transcription factor, NF-κB is a target of a large amount of miRNAs. Abnormal NF-κB activity is frequently associated with an abnormal level of miRNAs, which is found to play critical roles in disease progression including cancer. While the expression and activity of NF-κB can be directly or indirectly up-regulated or downregulated by various miRNAs, NF-κB can also regulate the expression of many miRNAs. Intriguingly, reciprocal regulation between miRNAs and NF-κB, which exists in the form of positive and negative feedback loops, is often observed in various cancers. In this chapter, the mechanisms and roles of miRNA-regulated NF-κB and NF-κB-regulated miRNAs in a variety of cancers will be discussed. The potential therapeutic use of miRNAs that are up- and down-stream of NF-κB signaling pathways as targets for cancer treatment will also be accessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldwin Jr AS. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest. 2001;107(1):3–6. PubMed Pubmed Central PMCID: 198555. Epub 2001/01/03. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest. 2001;107(3):241–6. PubMed Pubmed Central PMCID: 199203. Epub 2001/02/13. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2(4):301–10. PubMed Epub 2002/05/11. eng.

    Article  CAS  PubMed  Google Scholar 

  4. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol. 2002;3(3):221–7. PubMed Epub 2002/03/05. eng.

    Article  CAS  PubMed  Google Scholar 

  5. Grimm S, Baeuerle PA. The inducible transcription factor NF-kappa B: structure-function relationship of its protein subunits. Biochem J. 1993;290(Pt 2):297–308. PubMed Pubmed Central PMCID: 1132272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dhawan P, Singh AB, Ellis DL, Richmond A. Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Res. 2002;62(24):7335–42. PubMed Epub 2002/12/25. eng.

    CAS  PubMed  Google Scholar 

  7. Karin M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol. 2009;1(5):a000141. PubMed Pubmed Central PMCID: 2773649.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5(10):749–59. PubMed.

    Article  CAS  PubMed  Google Scholar 

  9. Karin M. NF-kappaB and cancer: mechanisms and targets. Mol Carcinog. 2006;45(6):355–61. PubMed.

    Article  CAS  PubMed  Google Scholar 

  10. Sassen S, Miska EA, Caldas C. MicroRNA: implications for cancer. Virchows Arch. 2008;452(1):1–10. PubMed Pubmed Central PMCID: 2151131.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang L, Lin C, Song L, Wu J, Chen B, Ying Z, et al. MicroRNA-30e* promotes human glioma cell invasiveness in an orthotopic xenotransplantation model by disrupting the NF-kappaB/IkappaBalpha negative feedback loop. J Clin Invest. 2012;122(1):33–47. PubMed Pubmed Central PMCID: 3248293. Epub 2011/12/14. eng.

    Article  CAS  PubMed  Google Scholar 

  12. Liu K, Zhao H, Yao H, Lei S, Lei Z, Li T, et al. MicroRNA-124 regulates the proliferation of colorectal cancer cells by targeting iASPP. BioMed Res Int. 2013;2013:867537. PubMed Pubmed Central PMCID: 3652105. Epub 2013/05/22. eng.

    PubMed  PubMed Central  Google Scholar 

  13. Kim SW, Ramasamy K, Bouamar H, Lin AP, Jiang D, Aguiar RC. MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci U S A. 2012;109(20):7865–70. PubMed Pubmed Central PMCID: 3356650. Epub 2012/05/03. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song L, Liu L, Wu Z, Li Y, Ying Z, Lin C, et al. TGF-beta induces miR-182 to sustain NF-kappaB activation in glioma subsets. J Clin Invest. 2012;122(10):3563–78. PubMed Pubmed Central PMCID: 3589141. Epub 2012/09/26. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Su JL, Chen PB, Chen YH, Chen SC, Chang YW, Jan YH, et al. Downregulation of microRNA miR-520h by E1A contributes to anticancer activity. Cancer Res. 2010;70(12):5096–108. PubMed Pubmed Central PMCID: 2891368. Epub 2010/05/27. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Korner C, Keklikoglou I, Bender C, Worner A, Munstermann E, Wiemann S. MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C epsilon (PKCepsilon). J Biol Chem. 2013;288(12):8750–61. PubMed Pubmed Central PMCID: 3605692. Epub 2013/02/01. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A, et al. Polycomb-mediated loss of miR-31 activates NIK-dependent NF-kappaB pathway in adult T cell leukemia and other cancers. Cancer Cell. 2012;21(1):121–35. PubMed Epub 2012/01/24. eng.

    Article  CAS  PubMed  Google Scholar 

  18. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene. 2008;27(42):5643–7. PubMed Pubmed Central PMCID: 2811234. Epub 2008/05/28. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li X, Xu B, Moran MS, Zhao Y, Su P, Haffty BG, et al. 53BP1 functions as a tumor suppressor in breast cancer via the inhibition of NF-kappaB through miR-146a. Carcinogenesis. 2012;33(12):2593–600. PubMed Epub 2012/10/03. eng.

    Article  CAS  PubMed  Google Scholar 

  20. Crone SG, Jacobsen A, Federspiel B, Bardram L, Krogh A, Lund AH, et al. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-kappaB by targeting CARD10 and COPS8 in gastric cancer. Mol Cancer. 2012;11:71. PubMed Pubmed Central PMCID: 3515505. Epub 2012/09/21. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Y, Vandenboom 2nd TG, Wang Z, Kong D, Ali S, Philip PA, et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010;70(4):1486–95. PubMed Pubmed Central PMCID: 2978025. Epub 2010/02/04. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu N, Zhang J, Cui W, Kong G, Zhang S, Yue L, et al. miR-520b regulates migration of breast cancer cells by targeting hepatitis B X-interacting protein and interleukin-8. J Biol Chem. 2011;286(15):13714–22. PubMed Pubmed Central PMCID: 3075715. Epub 2011/02/24. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keklikoglou I, Koerner C, Schmidt C, Zhang JD, Heckmann D, Shavinskaya A, et al. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-kappaB and TGF-beta signaling pathways. Oncogene. 2012;31(37):4150–63. PubMed Epub 2011/12/14. eng.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang S, Shan C, Kong G, Du Y, Ye L, Zhang X. MicroRNA-520e suppresses growth of hepatoma cells by targeting the NF-kappaB-inducing kinase (NIK). Oncogene. 2012;31(31):3607–20. PubMed Epub 2011/11/23. eng.

    Article  CAS  PubMed  Google Scholar 

  25. Ro S, Park C, Young D, Sanders KM, Yan W. Tissue-dependent paired expression of miRNAs. Nucleic Acids Res. 2007;35(17):5944–53. PubMed Pubmed Central PMCID: 2034466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang B, Pan X. RDX induces aberrant expression of microRNAs in mouse brain and liver. Environ Health Perspect. 2009;117(2):231–40. PubMed Pubmed Central PMCID: 2649225.

    Article  CAS  PubMed  Google Scholar 

  27. Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature. 2003;424(6950):801–5. PubMed.

    Article  CAS  PubMed  Google Scholar 

  28. Li G, Wang R, Gao J, Deng K, Wei J, Wei Y. RNA interference-mediated silencing of iASPP induces cell proliferation inhibition and G0/G1 cell cycle arrest in U251 human glioblastoma cells. Mol Cell Biochem. 2011;350(1-2):193–200. PubMed.

    Article  CAS  PubMed  Google Scholar 

  29. Lin B, Williams-Skipp C, Tao Y, Schleicher MS, Cano LL, Duke RC, et al. NF-kappaB functions as both a proapoptotic and antiapoptotic regulatory factor within a single cell type. Cell Death Differ. 1999;6(6):570–82. PubMed.

    Article  CAS  PubMed  Google Scholar 

  30. Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 2009;30(8):383–91. PubMed.

    Article  CAS  PubMed  Google Scholar 

  31. Palkowitsch L, Leidner J, Ghosh S, Marienfeld RB. Phosphorylation of serine 68 in the IkappaB kinase (IKK)-binding domain of NEMO interferes with the structure of the IKK complex and tumor necrosis factor-alpha-induced NF-kappaB activity. J Biol Chem. 2008;283(1):76–86. PubMed.

    Article  CAS  PubMed  Google Scholar 

  32. Biswas DK, Martin KJ, McAlister C, Cruz AP, Graner E, Dai SC, et al. Apoptosis caused by chemotherapeutic inhibition of nuclear factor-kappaB activation. Cancer Res. 2003;63(2):290–5. PubMed.

    CAS  PubMed  Google Scholar 

  33. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103(33):12481–6. PubMed Pubmed Central PMCID: 1567904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511. PubMed.

    Article  CAS  PubMed  Google Scholar 

  35. Paik JH, Jang JY, Jeon YK, Kim WY, Kim TM, Heo DS, et al. MicroRNA-146a downregulates NFkappaB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma. Clin Cancer Res. 2011;17(14):4761–71. PubMed Epub 2011/05/26. eng.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao JL, Rao DS, Boldin MP, Taganov KD, O’Connell RM, Baltimore D. NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci U S A. 2011;108(22):9184–9. PubMed Pubmed Central PMCID: 3107319. Epub 2011/05/18. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Q, Wang G, Shan JL, Yang ZX, Wang HZ, Feng J, et al. MicroRNA-224 is upregulated in HepG2 cells and involved in cellular migration and invasion. J Gastroenterol Hepatol. 2010;25(1):164–71. PubMed.

    Article  PubMed  Google Scholar 

  38. Cui W, Zhang Y, Hu N, Shan C, Zhang S, Zhang W, et al. miRNA-520b and miR-520e sensitize breast cancer cells to complement attack via directly targeting 3′UTR of CD46. Cancer Biol Ther. 2010;10(3):232–41. PubMed.

    Article  CAS  PubMed  Google Scholar 

  39. Shin VY, Jin H, Ng EK, Cheng AS, Chong WW, Wong CY, et al. NF-kappaB targets miR-16 and miR-21 in gastric cancer: involvement of prostaglandin E receptors. Carcinogenesis. 2011;32(2):240–5. PubMed Epub 2010/11/18. eng.

    Article  CAS  PubMed  Google Scholar 

  40. Duan Q, Wang X, Gong W, Ni L, Chen C, He X, et al. ER stress negatively modulates the expression of the miR-199a/214 cluster to regulates tumor survival and progression in human hepatocellular cancer. PLoS One. 2012;7(2):e31518. PubMed Pubmed Central PMCID: 3281082. Epub 2012/02/24. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scisciani C, Vossio S, Guerrieri F, Schinzari V, De Iaco R, D’Onorio de Meo P, et al. Transcriptional regulation of miR-224 upregulated in human HCCs by NFkappaB inflammatory pathways. J Hepatol. 2012;56(4):855–61. PubMed Epub 2011/12/20. eng.

    Article  CAS  PubMed  Google Scholar 

  42. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39(4):493–506. PubMed Pubmed Central PMCID: 2929389. Epub 2010/08/28. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bakirtzi K, Hatziapostolou M, Karagiannides I, Polytarchou C, Jaeger S, Iliopoulos D, et al. Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology. 2011;141(5):1749–61 e1. PubMed Epub 2011/08/03. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol. 2005;207(2):243–9. PubMed.

    Article  CAS  PubMed  Google Scholar 

  45. Rahadiani N, Takakuwa T, Tresnasari K, Morii E, Aozasa K. Latent membrane protein-1 of Epstein-Barr virus induces the expression of B-cell integration cluster, a precursor form of microRNA-155, in B lymphoma cell lines. Biochem Biophys Res Commun. 2008;377(2):579–83. PubMed Epub 2008/10/18. eng.

    Article  CAS  PubMed  Google Scholar 

  46. Pu J, Bai D, Yang X, Lu X, Xu L, Lu J. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155. Biochem Biophys Res Commun. 2012;428(2):210–5. PubMed Epub 2012/10/06. eng.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou P, Jiang W, Wu L, Chang R, Wu K, Wang Z. miR-301a is a candidate oncogene that targets the homeobox gene Gax in human hepatocellular carcinoma. Dig Dis Sci. 2012;57(5):1171–80. PubMed Epub 2012/03/01. eng.

    Article  CAS  PubMed  Google Scholar 

  48. Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer. 2007;120(5):1046–54. PubMed Pubmed Central PMCID: 2680248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu Z, Li Y, Takwi A, Li B, Zhang J, Conklin DJ, et al. miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J. 2011;30(1):57–67. PubMed Pubmed Central PMCID: 3020116. Epub 2010/11/30. eng.

    Article  CAS  PubMed  Google Scholar 

  50. Wu J, Ji X, Zhu L, Jiang Q, Wen Z, Xu S, et al. Up-regulation of microRNA-1290 impairs cytokinesis and affects the reprogramming of colon cancer cells. Cancer Lett. 2013;329(2):155–63. PubMed Epub 2012/11/13. eng.

    Article  CAS  PubMed  Google Scholar 

  51. Rokavec M, Wu W, Luo JL. IL6-mediated suppression of miR-200c directs constitutive activation of inflammatory signaling circuit driving transformation and tumorigenesis. Mol Cell. 2012;45(6):777–89. PubMed Pubmed Central PMCID: 3319241. Epub 2012/03/01. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li QQ, Chen ZQ, Cao XX, Xu JD, Xu JW, Chen YY, et al. Involvement of NF-kappaB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ. 2011;18(1):16–25. PubMed Pubmed Central PMCID: 3131865. Epub 2010/08/28. eng.

    Article  PubMed  Google Scholar 

  53. Arora H, Qureshi R, Jin S, Park AK, Park WY. miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFkappaB1. Exp Mol Med. 2011;43(5):298–304. PubMed Pubmed Central PMCID: 3104252. Epub 2011/04/06. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wan HY, Guo LM, Liu T, Liu M, Li X, Tang H. Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer. 2010;9:16. PubMed Pubmed Central PMCID: 2835654. Epub 2010/01/28. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Guo LM, Pu Y, Han Z, Liu T, Li YX, Liu M, et al. MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS J. 2009;276(19):5537–46. PubMed Epub 2009/08/26. eng.

    Article  CAS  PubMed  Google Scholar 

  56. Janssens S, Tinel A, Lippens S, Tschopp J. PIDD mediates NF-kappaB activation in response to DNA damage. Cell. 2005;123(6):1079–92. PubMed.

    Article  CAS  PubMed  Google Scholar 

  57. Wang J, Gu Z, Ni P, Qiao Y, Chen C, Liu X, et al. NF-kappaB P50/P65 hetero-dimer mediates differential regulation of CD166/ALCAM expression via interaction with microRNA-9 after serum deprivation, providing evidence for a novel negative auto-regulatory loop. Nucleic Acids Res. 2011;39(15):6440–55. PubMed Pubmed Central PMCID: 3159468. Epub 2011/05/17. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139(4):693–706. PubMed Pubmed Central PMCID: 2783826. Epub 2009/11/03. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Farazi TA, Horlings HM, Ten Hoeve JJ, Mihailovic A, Halfwerk H, Morozov P, et al. MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res. 2011;71(13):4443–53. PubMed Pubmed Central PMCID: 3129492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14(11):2348–60. PubMed Pubmed Central PMCID: 2578865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Niu J, Shi Y, Tan G, Yang CH, Fan M, Pfeffer LM, et al. DNA damage induces NF-kappaB-dependent microRNA-21 up-regulation and promotes breast cancer cell invasion. J Biol Chem. 2012;287(26):21783–95. PubMed Pubmed Central PMCID: 3381141. Epub 2012/05/02. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barbarotto E, Schmittgen TD, Calin GA. MicroRNAs and cancer: profile, profile, profile. Int J Cancer. 2008;122(5):969–77. PubMed.

    Article  CAS  PubMed  Google Scholar 

  63. Rai D, Karanti S, Jung I, Dahia PL, Aguiar RC. Coordinated expression of microRNA-155 and predicted target genes in diffuse large B-cell lymphoma. Cancer Genet Cytogenet. 2008;181(1):8–15. PubMed Pubmed Central PMCID: 2276854. Epub 2008/02/12. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1(7335):702–3. PubMed.

    Article  CAS  PubMed  Google Scholar 

  65. Weiss LM, Movahed LA, Warnke RA, Sklar J. Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. N Engl J Med. 1989;320(8):502–6. PubMed.

    Article  CAS  PubMed  Google Scholar 

  66. Kluiver J, van den Berg A, de Jong D, Blokzijl T, Harms G, Bouwman E, et al. Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma. Oncogene. 2007;26(26):3769–76. PubMed Epub 2006/12/19. eng.

    Article  CAS  PubMed  Google Scholar 

  67. Koon HW, Kim YS, Xu H, Kumar A, Zhao D, Karagiannides I, et al. Neurotensin induces IL-6 secretion in mouse preadipocytes and adipose tissues during 2,4,6,-trinitrobenzensulphonic acid-induced colitis. Proc Natl Acad Sci U S A. 2009;106(21):8766–71. PubMed Pubmed Central PMCID: 2688970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maoret JJ, Anini Y, Rouyer-Fessard C, Gully D, Laburthe M. Neurotensin and a non-peptide neurotensin receptor antagonist control human colon cancer cell growth in cell culture and in cells xenografted into nude mice. Int J Cancer. 1999;80(3):448–54. PubMed.

    Article  CAS  PubMed  Google Scholar 

  69. Patel S, Leal AD, Gorski DH. The homeobox gene Gax inhibits angiogenesis through inhibition of nuclear factor-kappaB-dependent endothelial cell gene expression. Cancer Res. 2005;65(4):1414–24. PubMed.

    Article  CAS  PubMed  Google Scholar 

  70. Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S, et al. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res. 2011;71(4):1497–505. PubMed Pubmed Central PMCID: 3079548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Luscan A, Shackleford G, Masliah-Planchon J, Laurendeau I, Ortonne N, Varin J, et al. The activation of the WNT signalling pathway is a hallmark in neurofibromatosis type 1 tumorigenesis. Clin Cancer Res. 2013;20(2):358–71. PubMed.

    Article  PubMed  Google Scholar 

  72. Luis TC, Naber BA, Roozen PP, Brugman MH, de Haas EF, Ghazvini M, et al. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell. 2011;9(4):345–56. PubMed.

    Article  CAS  PubMed  Google Scholar 

  73. Hu X, Schwarz JK, Lewis Jr JS, Huettner PC, Rader JS, Deasy JO, et al. A microRNA expression signature for cervical cancer prognosis. Cancer Res. 2010;70(4):1441–8. PubMed Pubmed Central PMCID: 2844247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tsai KW, Liao YL, Wu CW, Hu LY, Li SC, Chan WC, et al. Aberrant hypermethylation of miR-9 genes in gastric cancer. Epigenetics. 2011;6(10):1189–97. PubMed Pubmed Central PMCID: 3225840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu N, Sun Q, Chen J, Li J, Zeng Y, Zhai S, et al. MicroRNA-9 suppresses uveal melanoma cell migration and invasion through the NF-kappaB1 pathway. Oncol Rep. 2012;28(3):961–8. PubMed Epub 2012/07/25. eng.

    PubMed  Google Scholar 

  76. Liu S, Kumar SM, Lu H, Liu A, Yang R, Pushparajan A, et al. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-kappaB1-Snail1 pathway in melanoma. J Pathol. 2012;226(1):61–72. PubMed Epub 2011/12/02. eng.

    Article  CAS  PubMed  Google Scholar 

  77. Ohneda O, Ohneda K, Arai F, Lee J, Miyamoto T, Fukushima Y, et al. ALCAM (CD166): its role in hematopoietic and endothelial development. Blood. 2001;98(7):2134–42. PubMed.

    Article  CAS  PubMed  Google Scholar 

  78. Borralho PM, Kren BT, Castro RE, da Silva IB, Steer CJ, Rodrigues CM. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J. 2009;276(22):6689–700. PubMed Epub 2009/10/22. eng.

    Article  CAS  PubMed  Google Scholar 

  79. Kim SY, Kim JC, Kim JK, Kim HJ, Lee HM, Choi MS, et al. Hepatitis B virus X protein enhances NFkappaB activity through cooperating with VBP1. BMB Rep. 2008;41(2):158–63. PubMed.

    Article  CAS  PubMed  Google Scholar 

  80. Su F, Schneider RJ. Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J Virol. 1996;70(7):4558–66. PubMed Pubmed Central PMCID: 190392.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yun C, Um HR, Jin YH, Wang JH, Lee MO, Park S, et al. NF-kappaB activation by hepatitis B virus X (HBx) protein shifts the cellular fate toward survival. Cancer Lett. 2002;184(1):97–104. PubMed.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang X, Liu S, Hu T, He Y, Sun S. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology. 2009;50(2):490–9. PubMed Epub 2009/05/28. eng.

    Article  CAS  PubMed  Google Scholar 

  83. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927–39. PubMed.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyong Wu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yuan, Y., Tong, L., Wu, S. (2015). microRNA and NF-kappa B. In: Santulli, G. (eds) microRNA: Basic Science. Advances in Experimental Medicine and Biology, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-319-22380-3_9

Download citation

Publish with us

Policies and ethics