Skip to main content

microRNAs in Pancreatic β-Cell Physiology

  • Chapter
Book cover microRNA: Basic Science

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 887))

Abstract

The β-cells within the pancreas are responsible for production and secretion of insulin. Insulin is released from pancreatic β-cells in response to increasing blood glucose levels and acts on insulin-sensitive tissues such as skeletal muscle and liver in order to maintain normal glucose homeostasis. Therefore, defects in pancreatic β-cell function lead to hyperglycemia and diabetes mellitus. A new class of molecules called microRNAs has been recently demonstrated to play a crucial role in regulation of pancreatic β-cell function under normal and pathophysiological conditions. miRNAs have been shown to regulate endocrine pancreas development, insulin biosynthesis, insulin exocytosis, and β-cell expansion. Many of the β-cell enriched miRNAs have multiple functions and regulate pancreas development as well as insulin biosynthesis and exocytosis. Furthermore, several of the β-cell specific miRNAs have been shown to accumulate in the circulation before the onset of diabetes and may serve as potential biomarkers for prediabetes. This chapter will focus on miRNAs that are enriched in pancreatic β-cells and play a critical role in modulation of β-cell physiology and may have clinical significance in the treatment of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. U.K. Prospective Diabetes Study Group. Diabetes. 1995;44(11):1249–58.

    Google Scholar 

  2. Levy J, Atkinson AB, Bell PM, McCance DR, Hadden DR. Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast diet study. Diabet Med. 1998;15(4):290–6.

    Article  CAS  PubMed  Google Scholar 

  3. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–30.

    Article  CAS  PubMed  Google Scholar 

  4. Dumortier O, Van Obberghen E. MicroRNAs in pancreas development. Diabetes Obes Metab. 2012;14 Suppl 3:22–8.

    Article  CAS  PubMed  Google Scholar 

  5. Nesca V, Guay C, Jacovetti C, Menoud V, Peyot ML, Laybutt DR, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia. 2013;56(10):2203–12.

    Article  CAS  PubMed  Google Scholar 

  6. Ozcan S. Minireview: microRNA function in pancreatic beta cells. Mol Endocrinol. 2014;28(12):1922–33.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Singer RA, Arnes L, Sussel L. Noncoding RNAs in beta cell biology. Curr Opin Endocrinol Diabetes Obes. 2015;22(2):77–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A. 2005;102(31):10898–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. Dicer is essential for mouse development. Nat Genet. 2003;35(3):215–7.

    Article  CAS  PubMed  Google Scholar 

  10. Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes. 2007;56(12):2938–45.

    Article  CAS  PubMed  Google Scholar 

  11. Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, Rivkin N, et al. miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J. 2011;30(5):835–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kalis M, Bolmeson C, Esguerra JL, Gupta S, Edlund A, Tormo-Badia N, et al. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One. 2011;6(12), e29166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mandelbaum AD, Melkman-Zehavi T, Oren R, Kredo-Russo S, Nir T, Dor Y, et al. Dysregulation of Dicer1 in beta cells impairs islet architecture and glucose metabolism. Exp Diabetes Res. 2012;2012:470302.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14(7):447–59.

    Article  CAS  PubMed  Google Scholar 

  15. Dueck A, Meister G. Assembly and function of small RNA—argonaute protein complexes. Biol Chem. 2014;395(6):611–29.

    Article  CAS  PubMed  Google Scholar 

  16. Tattikota SG, Rathjen T, McAnulty SJ, Wessels HH, Akerman I, van de Bunt M, et al. Argonaute2 mediates compensatory expansion of the pancreatic beta cell. Cell Metab. 2014;19(1):122–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tattikota SG, Sury MD, Rathjen T, Wessels HH, Pandey AK, You X, et al. Argonaute2 regulates the pancreatic beta-cell secretome. Mol Cell Proteomics. 2013;12(5):1214–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A. 2009;106(14):5813–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol. 2013;29:81–105.

    Article  CAS  PubMed  Google Scholar 

  20. Murtaugh LC. Pancreas and beta-cell development: from the actual to the possible. Development. 2007;134(3):427–38.

    Article  CAS  PubMed  Google Scholar 

  21. Docherty K. Pancreatic stellate cells can form new beta-like cells. Biochem J. 2009;421(2):e1–4.

    Article  CAS  PubMed  Google Scholar 

  22. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development. 2002;129(10):2447–57.

    CAS  PubMed  Google Scholar 

  23. Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A. 2000;97(4):1607–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kredo-Russo S, Mandelbaum AD, Ness A, Alon I, Lennox KA, Behlke MA, et al. Pancreas-enriched miRNA refines endocrine cell differentiation. Development. 2012;139(16):3021–31.

    Article  CAS  PubMed  Google Scholar 

  25. Correa-Medina M, Bravo-Egana V, Rosero S, Ricordi C, Edlund H, Diez J, et al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns. 2009;9(4):193–9.

    Article  CAS  PubMed  Google Scholar 

  26. Joglekar MV, Patil D, Joglekar VM, Rao GV, Reddy DN, Mitnala S, et al. The miR-30 family of microRNAs confer epithelial phenotype to human pancreatic cells. Islets. 2009;1(2):137–47.

    Article  PubMed  Google Scholar 

  27. Bravo-Egana V, Rosero S, Molano RD, Pileggi A, Ricordi C, Dominguez-Bendala J, et al. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem Biophys Res Commun. 2008;366(4):922–6.

    Article  CAS  PubMed  Google Scholar 

  28. St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature. 1997;387(6631):406–9.

    Article  CAS  PubMed  Google Scholar 

  29. Sander M, Neubuser A, Kalamaras J, Ee HC, Martin GR, German MS. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev. 1997;11(13):1662–73.

    Article  CAS  PubMed  Google Scholar 

  30. Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem. 2007;282(27):19575–88.

    Article  CAS  PubMed  Google Scholar 

  31. Klein D, Misawa R, Bravo-Egana V, Vargas N, Rosero S, Piroso J, et al. MicroRNA expression in alpha and beta cells of human pancreatic islets. PLoS One. 2013;8(1), e55064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 2007;5(8), e203.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee CS, De Leon DD, Kaestner KH, Stoffers DA. Regeneration of pancreatic islets after partial pancreatectomy in mice does not involve the reactivation of neurogenin-3. Diabetes. 2006;55(2):269–72.

    CAS  PubMed  Google Scholar 

  34. Joglekar MV, Parekh VS, Hardikar AA. New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab. 2007;18(10):393–400.

    Article  CAS  PubMed  Google Scholar 

  35. Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol. 2007;311(2):603–12.

    Article  CAS  PubMed  Google Scholar 

  36. Andrali SS, Sampley ML, Vanderford NL, Ozcan S. Glucose regulation of insulin gene expression in pancreatic beta-cells. Biochem J. 2008;415(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  37. Steiner DF, Chan SJ, Welsh JM, Kwok SC. Structure and evolution of the insulin gene. Annu Rev Genet. 1985;19:463–84.

    Article  CAS  PubMed  Google Scholar 

  38. Iguchi H, Ikeda Y, Okamura M, Tanaka T, Urashima Y, Ohguchi H, et al. SOX6 attenuates glucose-stimulated insulin secretion by repressing PDX1 transcriptional activity and is down-regulated in hyperinsulinemic obese mice. J Biol Chem. 2005;280(45):37669–80.

    Article  CAS  PubMed  Google Scholar 

  39. Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated miRNAs from pancreatic b cells reveals a role for miR-30d in insulin transcription. RNA. 2009;15(2):287–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim JW, You YH, Jung S, Suh-Kim H, Lee IK, Cho JH, et al. miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia. 2013;56(4):847–55.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao X, Mohan R, Ozcan S, Tang X. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells. J Biol Chem. 2012;287(37):31155–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49(11):1751–60.

    Article  CAS  PubMed  Google Scholar 

  43. Seino S, Shibasaki T, Minami K. Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J Clin Invest. 2011;121(6):2118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Latreille M, Hausser J, Stutzer I, Zhang Q, Hastoy B, Gargani S, et al. MicroRNA-7a regulates pancreatic beta cell function. J Clin Invest. 2014;124(6):2722–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem. 2006;281(37):26932–42.

    Article  CAS  PubMed  Google Scholar 

  46. Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets. FEBS J. 2011;278(7):1167–74.

    Article  CAS  PubMed  Google Scholar 

  47. Fukuda M. Rab27 and its effectors in secretory granule exocytosis: a novel docking machinery composed of a Rab27.effector complex. Biochem Soc Trans. 2006;34(Pt 5):691–5.

    Article  CAS  PubMed  Google Scholar 

  48. Gomi H, Mizutani S, Kasai K, Itohara S, Izumi T. Granuphilin molecularly docks insulin granules to the fusion machinery. J Cell Biol. 2005;171(1):99–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005;2(2):105–17.

    Article  CAS  PubMed  Google Scholar 

  50. Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006;4(2), e31.

    Article  PubMed  Google Scholar 

  51. Poy MN, Spranger M, Stoffel M. MicroRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab. 2007;9 Suppl 2:67–73.

    Article  CAS  PubMed  Google Scholar 

  52. Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem. 2008;389(3):305–12.

    Article  CAS  PubMed  Google Scholar 

  53. Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes. 2010;59(4):978–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Regazzi R, Sadoul K, Meda P, Kelly RB, Halban PA, Wollheim CB. Mutational analysis of VAMP domains implicated in Ca2 + -induced insulin exocytosis. EMBO J. 1996;15(24):6951–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yaekura K, Julyan R, Wicksteed BL, Hays LB, Alarcon C, Sommers S, et al. Insulin secretory deficiency and glucose intolerance in Rab3A null mice. J Biol Chem. 2003;278(11):9715–21.

    Article  CAS  PubMed  Google Scholar 

  56. Kang MH, Zhang LH, Wijesekara N, de Haan W, Butland S, Bhattacharjee A, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler Thromb Vasc Biol. 2013;33(12):2724–32.

    Article  CAS  PubMed  Google Scholar 

  57. Wijesekara N, Zhang LH, Kang MH, Abraham T, Bhattacharjee A, Warnock GL, et al. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes. 2012;61(3):653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brunham LR, Kruit JK, Pape TD, Timmins JM, Reuwer AQ, Vasanji Z, et al. Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat Med. 2007;13(3):340–7.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao E, Keller MP, Rabaglia ME, Oler AT, Stapleton DS, Schueler KL, et al. Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice. Mamm Genome. 2009;20(8):476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A. 2005;102(45):16426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Soni MS, Rabaglia ME, Bhatnagar S, Shang J, Ilkayeva O, Mynatt R, et al. Downregulation of carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion. Diabetes. 2014;63(11):3805–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Prentki M, Matschinsky FM, Madiraju SR. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013;18(2):162–85.

    Article  CAS  PubMed  Google Scholar 

  63. Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5(4):219–26.

    Article  CAS  PubMed  Google Scholar 

  64. Ruan Q, Wang T, Kameswaran V, Wei Q, Johnson DS, Matschinsky F, et al. The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death. Proc Natl Acad Sci U S A. 2011;108(29):12030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008;283(2):1026–33.

    Article  CAS  PubMed  Google Scholar 

  66. Roggli E, Gattesco S, Caille D, Briet C, Boitard C, Meda P, et al. Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes. 2012;61(7):1742–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bernal-Mizrachi E, Kulkarni RN, Scott DK, Mauvais-Jarvis F, Stewart AF, Garcia-Ocana A. Human beta-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map. Diabetes. 2014;63(3):819–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang Y, Liu J, Liu C, Naji A, Stoffers DA. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic beta-cells. Diabetes. 2013;62(3):887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.

    Article  CAS  PubMed  Google Scholar 

  70. Hamada S, Hara K, Hamada T, Yasuda H, Moriyama H, Nakayama R, et al. Upregulation of the mammalian target of rapamycin complex 1 pathway by Ras homolog enriched in brain in pancreatic beta-cells leads to increased beta-cell mass and prevention of hyperglycemia. Diabetes. 2009;58(6):1321–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Araujo TG, Oliveira AG, Saad MJ. Insulin-resistance-associated compensatory mechanisms of pancreatic Beta cells: a current opinion. Front Endocrinol. 2013;4:146.

    Article  Google Scholar 

  72. Minn AH, Hafele C, Shalev A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology. 2005;146(5):2397–405.

    Article  CAS  PubMed  Google Scholar 

  73. Chen J, Saxena G, Mungrue IN, Lusis AJ, Shalev A. Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes. 2008;57(4):938–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen J, Hui ST, Couto FM, Mungrue IN, Davis DB, Attie AD, et al. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J. 2008;22(10):3581–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Filios SR, Xu G, Chen J, Hong K, Jing G, Shalev A. MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J Biol Chem. 2014;289(52):36275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008;68(19):7846–54.

    Article  CAS  PubMed  Google Scholar 

  77. Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guay C, Regazzi R. Role of islet microRNAs in diabetes: which model for which question? Diabetologia. 2015;58(3):456–63.

    Article  CAS  PubMed  Google Scholar 

  79. Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ. Circulating miR-375 as a biomarker of beta-cell death and diabetes in mice. Endocrinology. 2013;154(2):603–8.

    Article  CAS  PubMed  Google Scholar 

  80. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all authors, whose original publications were omitted in this chapter due to space constraints. Research in the author’s laboratory was supported by grants R01DK067581 from the NIH/NIDDK, P20RR020171 from NIH/NCRR, 1-05-CD-15 from ADA, 14GRNT20380383 from AHA, and UL1TR000117 from NIH CTSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabire Özcan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Özcan, S. (2015). microRNAs in Pancreatic β-Cell Physiology. In: Santulli, G. (eds) microRNA: Basic Science. Advances in Experimental Medicine and Biology, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-319-22380-3_6

Download citation

Publish with us

Policies and ethics