Skip to main content

Grasp Database Generator for Anthropomorphic Robotic Hands

  • Conference paper
  • First Online:
Robotics and Mechatronics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 37))

  • 1628 Accesses

Abstract

Grasp databases can be useful for data-driven grasp synthesis algorithm or benchmarking grasp quality metrics. This paper presents an algorithm to produce a grasp database for anthropomorphic robotic hands. The method can generate different types of grasps from the human grasp taxonomy, it relies on the notion of hand preshapes. For each type of grasp there is a hand preshape defined, containing information on how the hand should approach the object and close its fingers. The proposed approach is validated on the anthropomorphic RoBioSS hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciocarlie, M., Goldfeder, C., Allen, P.: Dexterous grasping via eigengrasps: a low-dimensional approach to a high-complexity problem. In: Proceedings of the Robotics: Science and Systems 2007 Workshop-Sensing and Adapting to the Real World, Electronically published (2007)

    Google Scholar 

  2. Diankov, R., Kuffner, J.: OpenRAVE: A Planning Architecture for Autonomous Robotics. Technical Report (CMU-RI-TR-08-34) (2008)

    Google Scholar 

  3. Feix, T., Bullock, I.M., Dollar, A.M.: Analysis of human grasping behavior: object characteristics and grasp type. IEEE Trans. Haptics (in press) 7(3), 311–323 (2014). doi:10.1109/TOH.2014.2326871

    Google Scholar 

  4. Feix, T., Pawlik, R., Romero, J., Kragic, D.: The generation of a comprehensive grasp taxonomy. Archives of Physical Medicine

    Google Scholar 

  5. Goins, A.K., Carpenter, R., Wong, W.k., Balasubramanian, R.: Evaluating the efficacy of grasp metrics for utilization in a Gaussian process-Based grasp predictor. In: International Conference on Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ, pp. 3353–3360 (2014). doi:10.1109/IROS.2014.6943029

  6. Goldfeder, C., Ciocarlie, M., Dang, H., Allen, P.K.: The columbia grasp database. In: Proceedings—IEEE International Conference on Robotics and Automation, pp. 1710–1716 (2009). doi:10.1109/ROBOT.2009.5152709

  7. León, B., Rubert, C., Morales, A.: Characterization of grasp quality measures for evaluating robotic hands prehension. In: IEEE International Conference on Robotics and Automation, pp. 3688–3693 (2014). doi:10.1109/ICRA.2014.6907393

  8. Miller, A., Allen, P.: Examples of 3D grasp quality computations. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C) vol. 2, pp. 1240–1246 (1999). doi:10.1109/ROBOT.1999.772531

  9. Miller, A., Knoop, S., Christensen, H., Allen, P.: Automatic grasp planning using shape primitives. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 2, pp. 1824–1829 (2003). doi:10.1109/ROBOT.2003.1241860

  10. The prehensile movements of the human hand: Napier. J. Bone Joint Surg. 38, 902–913 (1956)

    Google Scholar 

  11. Roa, M.A., Suárez, R.: Grasp quality measures: review and performance (2014). doi:10.1007/s10514-014-9402-3

    Google Scholar 

  12. Sahbani, A., El-Khoury, S., Bidaud, P.: An overview of 3D object grasp synthesis algorithms. Rob. Auton. Syst. 60(3), 326–336 (2012). doi:10.1016/j.robot.2011.07.016

    Article  Google Scholar 

  13. Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998) (citeulike-article-id:423192)

    Google Scholar 

  14. Wren, D., Fisher, R.: Dextrous hand grasping strategies using preshapes and digit trajectories. In: 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, vol. 1, (1995). doi:10.1109/ICSMC.1995.537883

Download references

Acknowledgements

This work has been sponsored by the French government research program Investissements d’Avenir through the Robotex Equipment of Excellence (ANR-10-EQPX-44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mnyusiwalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mnyusiwalla, H., Vulliez, P., Gazeau, J.P., Zeghloul, S. (2016). Grasp Database Generator for Anthropomorphic Robotic Hands. In: Zeghloul, S., Laribi, M., Gazeau, JP. (eds) Robotics and Mechatronics. Mechanisms and Machine Science, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-22368-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22368-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22367-4

  • Online ISBN: 978-3-319-22368-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics