Dynamic Simulation of a Cable-Based Gait Training Machine

  • H. LamineEmail author
  • S. Bennour
  • L. Romdhane
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 37)


In this paper, we present a dynamic analysis of a new type of gait training machine. This latter is based on a conventional body weight support system and a cable driven parallel robot in order to move the lower limbs. This gait training machine can be used to restore walking of neurologically injured patients. The aim of this study is to model and simulate dynamically this machine during a walk cycle. The obtained results will mainly be used in order to size the different actuators of the cable robot.


Gait rehabilitation Cable driven robots Body weight support system Dynamics 


  1. 1.
    Hornby, T.G., Zemon, D.H., Campbell, D.: Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys. Ther. 85, 52–66 (2005)Google Scholar
  2. 2.
    Galvez, J.A., Reinkensmeyer, D.J.: Robotics for Gait Training After Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation 11(2), 18–33 (2005)CrossRefGoogle Scholar
  3. 3.
    Benito-Penalva, J., Edwards, D.J., Opisso, E., Cortes, M., Lopez-Blazquez, R., Murillo, N., Costa, U., Tormos, J.M., Vidal-Samsó, J., Valls-Solé, J., Medina, J.: Gait training in human spinal cord injury using electromechanical systems: effect of device type and patient characteristics. Arch. Phys. Med. Rehabil. 93(3), 404–412 (2012)CrossRefGoogle Scholar
  4. 4.
    Díaz, I., Gil, J.J., Sánchez, E.: Lower-limb robotic rehabilitation: literature review and challenges. Journal of Robotics 2011, 1–11 (2011)CrossRefGoogle Scholar
  5. 5.
    Colombo, G., Joerg, M., Schreier, R., Dietz, V.: Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 37(6), 693–700 (2000)Google Scholar
  6. 6.
    Taherifar, A., Hadian, M.R., Mousavi, M., Rassaf, A., Ghiasi, F.: LOKOIRAN—a novel robot for rehabilitation of spinal cord injury and stroke patients. In: International Conference on Robotics and Mechatronics, ICRoM 2013, pp. 218–223 (2013)Google Scholar
  7. 7.
    Frey, M., Colombo, G., Vaglio, M., Bucher, R., Jörg, M., Riener, R.: A novel mechatronic body weight support system. IEEE Trans. Neural Syst. Rehabil. Eng. 14(3), 311–321 (2006)CrossRefGoogle Scholar
  8. 8.
    Vaughan, C.L., Davis, B.L., O’Connor, J.C.: Dynamics of Human Gait, 2nd edn. Kiboho Publishers, Howard Place, WesternCape 7450, South Africa (1999)Google Scholar
  9. 9.
    Schmitt, C.: Orthèses fonctionnelles à cinématique parallèle et sérielle pour la rééducation des membres inférieurs,” Ph.D. dissertation, EPFL, Lausanne, Swiss (2007)Google Scholar
  10. 10.
    Hidler, J., Wisman, W., Neckel, N.: Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin. Biomech. 23(10), 1251–1259 (2008)CrossRefGoogle Scholar
  11. 11.
    Pham, C.B., Yeo, S.H., Yang, G., Chen, I.-M.: Workspace analysis of fully restrained cable-driven manipulators. Rob. Auton. Syst. 57(9), 901–912 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratoire de Mécanique de Sousse, Ecole Nationale d‘Ingénieurs de SousseUniversité de SousseTunisieUAE
  2. 2.Mechanical Engineering DepartmentAmerican University of SharjahSharjahUAE

Personalised recommendations