Oriented Online Route Recommendation for Spatial Crowdsourcing Task Workers

  • Yu LiEmail author
  • Man Lung Yiu
  • Wenjian Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9239)


Emerging spatial crowdsourcing platforms enable the workers (i.e., crowd) to complete spatial crowdsourcing tasks (like taking photos, conducting citizen journalism) that are associated with rewards and tagged with both time and location features. In this paper, we study the problem of online recommending an optimal route for a crowdsourcing worker, such that he can (i) reach his destination on time and (ii) receive the maximum reward from tasks along the route. We show that no optimal online algorithm exists in this problem. Therefore, we propose several heuristics, and powerful pruning rules to speed up our methods. Experimental results on real datasets show that our proposed heuristics are very efficient, and return routes that contain 82–91 % of the optimal reward.


  1. 1.
    Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187, 985–1032 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Allan, B., Ran, E.-Y.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  3. 3.
    Alt, F., Shirazi, A.S., Schmidt, A., Kramer, U., Nawaz, Z.: Location-based crowdsourcing: extending crowdsourcing to the real world. In: NordiCHI, pp. 13–22 (2010)Google Scholar
  4. 4.
    Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line travelling salesman. Algorithmica 29, 560–581 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for deadline-tsp and vehicle routing with time-windows. In: Symposium on Theory of, Computing, pp. 166–174 (2004)Google Scholar
  6. 6.
    Blom, M., Krumke, S.O., Paepe, W.E.D., Stougie, L.: The online tsp against fair adversaries. INFORMS J. Comput. 13, 138–148 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bulut, M.F., Yilmaz, Y.S., Demirbas, M.: Crowdsourcing location-based queries. In: PERCOM Workshops, pp. 513–518 (2011)Google Scholar
  8. 8.
    Chekuri, C., Korula, N.: Approximation algorithms for orienteering with time windows. CoRR (2007)Google Scholar
  9. 9.
    Chen, Z., Fu, R., Zhao, Z., Liu, Z., Xia, L., Chen, L., Cheng, P., Cao, C.C., Tong, Y., Zhang, C.J.: gmission: A general spatial crowdsourcing platform. In: PVLDB, pp. 1629–1632 (2014)Google Scholar
  10. 10.
    Deng, D., Shahabi, C., Demiryurek, U.: Maximizing the number of worker’s self-selected tasks in spatial crowdsourcing. In: SIGSPATIAL, pp. 314–323 (2013)Google Scholar
  11. 11.
    Eiselt, H.A., Gendreau, M., Laporte, G.: Location of facilities on a network subject to a single-edge failure. Networks 22, 231–246 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Frederickson, G.N., Wittman, B.: Approximation algorithms for the traveling repairman and speeding deliveryman problems. Algorithmica 62, 1198–1221 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G.E.: A survey on algorithmic approaches for solving tourist trip design problems. J. Heuristics 20, 291–328 (2014)CrossRefGoogle Scholar
  14. 14.
    Jaillet, P., Wagner, M.R.: Online routing problems: value of advanced information as improved competitive ratios. Transp. Sci. 40, 200–210 (2006)CrossRefGoogle Scholar
  15. 15.
    Kazemi, L., Shahabi, C.: Geocrowd: enabling query answering with spatial crowdsourcing. In: SIGSPATIAL, ppp. 189–198 (2012)Google Scholar
  16. 16.
    Kazemi, L., Shahabi, C., Chen, L.: Geotrucrowd: trustworthy query answering with spatial crowdsourcing. In: SIGSPATIAL, pp. 304–313 (2013)Google Scholar
  17. 17.
    Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.-H.: On trip planning queries in spatial databases. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 273–290. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  18. 18.
    Pournajaf, L., Xiong, L., Sunderam, V.S., Goryczka, S.: Spatial task assignment for crowd sensing with cloaked locations. In: MDM, pp. 73–82 (2014)Google Scholar
  19. 19.
    Righini, G., Salani, M.: Decremental state space relaxation strategies and initialization heuristics for solving the orienteering problem with time windows with dynamic programming. Comput. Oper. Res. 36, 1191–1203 (2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo method. Wiley, Hoboken (2011)Google Scholar
  21. 21.
    Sharifzadeh, M., Kolahdouzan, M.R., Shahabi, C.: The optimal sequenced route query. VLDB J. 17, 765–787 (2008)CrossRefGoogle Scholar
  22. 22.
    To, H., Ghinita, G., Shahabi, C.: A framework for protecting worker location privacy in spatial crowdsourcing. In: PVLDB, pp. 919–930 (2014)Google Scholar
  23. 23.
    Vansteenwegen, P., Souffriau, W., Oudheusden, D.V.: The orienteering problem: a survey. Eur. J. Oper. Res. 209, 1–10 (2011)CrossRefzbMATHGoogle Scholar
  24. 24.
    Wen, X., Xu, Y., Zhang, H.: Online traveling salesman problem with deadlines and service flexibility. J. Comb. Optim. 1–18 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ComputingHong Kong Polytechnic UniversityHong KongChina

Personalised recommendations