Advertisement

ParetoPrep: Efficient Lower Bounds for Path Skylines and Fast Path Computation

  • Michael Shekelyan
  • Gregor JosséEmail author
  • Matthias Schubert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9239)

Abstract

Computing cost-optimal paths in network data is an important task in many application areas like transportation networks, computer networks, or social graphs. In many cases, the cost of an edge can be described by various cost criteria. For example, in a road network possible cost criteria are distance, time, ascent, energy consumption or toll fees. In such a multicriteria network, path optimality can be defined in various ways. In particular, optimality might be defined as a combination of the given cost factors. To avoid finding a suitable combination function, methods like path skyline queries return all potentially optimal paths. To compute alternative paths in larger networks, most efficient algorithms rely on lower bound cost estimations to approximate the remaining costs from an arbitrary node to the specified target. In this paper, we introduce ParetoPrep, a new method for efficient lower bound computation which can be used as a preprocessing step in multiple algorithms for computing path alternatives. ParetoPrep requires less time and visits less nodes in the network than state-of-the-art preprocessing steps. Our experiments show that path skyline and linear path skyline computation can be significantly accelareted by ParetoPrep.

Keywords

Optimal Path Target Node Query Time Skyline Query Cost Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research has received funding from the Shared E-Fleet project (in the IKTII program), by the German Federal Ministry of Economics and Technology (grant no. 01ME12107).

References

  1. 1.
    Andersen, K.A., Skriver, A.J.: A label correcting approach for solving bicriterion shortest-path problems. Comput. Oper. Res. 27, 507–524 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Balteanu, A., Jossé, G., Schubert, M.: Mining driving preferences in multi-cost networks. In: Nascimento, M.A., Sellis, T., Cheng, R., Sander, J., Zheng, Y., Kriegel, H.-P., Renz, M., Sengstock, C. (eds.) SSTD 2013. LNCS, vol. 8098, pp. 74–91. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering (ICDE), Heidelberg, Germany (2001)Google Scholar
  4. 4.
    Chew, K.L., Tung, C.T.: A multicriteria pareto-optimal path algorithm. Eur. J. Oper. Res. 62, 203–209 (1992)zbMATHCrossRefGoogle Scholar
  5. 5.
    Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Ehrgott, M., Raith, A.: A comparison of solution strategies for biobjective shortest path problems. Comput. Oper. Res. 36, 1299–1331 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets graph theory. Technical report MSR-TR-2004-24, Microsoft Research (2004)Google Scholar
  8. 8.
    Graf, F., Kriegel, H.-P., Renz, M., Schubert, M.: Mario: Multi attribute routing in open street map (2011)Google Scholar
  9. 9.
    Guo, C., Jensen, C.S., Kaul, M., Yang, B., Shang, S.: Stochastic skyline route planning under time-varying uncertainty. In: ICDE 2014, pp. 136–147 (2014)Google Scholar
  10. 10.
    Guo, C., Jensen, C.S., Yang, B., Guo, C., Ma, Y.: Toward personalized, context-aware routing. VLDB J. 24(2), 297–318 (2015)CrossRefGoogle Scholar
  11. 11.
    Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Application. Lecture Notes in Economics and Mathematical Systems, vol. 177, pp. 109–127. Springer, Heidelberg (1980) CrossRefGoogle Scholar
  12. 12.
    Ishwar, M., Mote, J., Olson, D.L.: A parametric approach to solving bicriterion shortest path problems. Eur. J. Oper. Res. 53, 81–92 (1991)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kriegel, H.P., Renz, M., Schubert, M.: Route skyline queries: a multi-preference path planning approach. In: ICDE 2010, pp. 261–272 (2010)Google Scholar
  14. 14.
    Machuca, E., Mandow, L.: Multiobjective heuristic search in road maps. Expert Syst. Appl. 39, 6435–6445 (2012)CrossRefGoogle Scholar
  15. 15.
    Müller-Hannemann, M., Weihe, K.: Pareto shortest paths is often feasible in practice. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001. LNCS, vol. 2141, pp. 185–197. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  16. 16.
    Shekelyan, M., Jossé, G., Schubert, M.: Linear path skylines in multicriteria networks. In: ICDE15, pp. 459–470 (2015)Google Scholar
  17. 17.
    Shekelyan, M., Jossé, G., Schubert, M., Kriegel, H.-P.: Linear path skyline computation in bicriteria networks. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part I. LNCS, vol. 8421, pp. 173–187. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  18. 18.
    Skriver, A.J.: A classification of bicriterion shortest path (BSP) algorithms. Asia Pac. J. Ope. Res. 17, 199–212 (2000)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Stewart, B., Chelsea, I.: White. Multiobjective a*. J. ACM 38, 775–814 (1991)zbMATHCrossRefGoogle Scholar
  20. 20.
    Tarapata, Z.: Selected multicriteria shortest path problems: an analysis of complexity, models and adaptation of standard algorithms. Int. J. Appl. Math. Comput. Sci. 17, 269–287 (2007)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michael Shekelyan
    • 2
  • Gregor Jossé
    • 1
    Email author
  • Matthias Schubert
    • 1
  1. 1.Institute for InformaticsLudwig-Maximilians-University MunichMunichGermany
  2. 2.Faculty of Computer ScienceFree University of Bozen-BolzanoBozen-bolzanoItaly

Personalised recommendations