Geo-Social Keyword Search

  • Ritesh Ahuja
  • Nikos Armenatzoglou
  • Dimitris PapadiasEmail author
  • George J. Fakas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9239)


In this paper, we propose Geo-Social Keyword (GSK) search, which enables the retrieval of users, points of interest (POIs), or keywords that satisfy geographic, social, and/or textual criteria. We first introduce a general GSK framework that covers a wide range of real-world tasks, including advertisement, context-based search, and market analysis. Then, we present three concrete GSK queries: (i) NPRU that returns the top-k users based on their spatial proximity to a given query location, their popularity, and their similarity to an input set of terms; (ii) NSTP that outputs the top-k POIs based on their proximity to a user v, the number of check-ins by friends of v, and their similarity to a set of terms; (iii) FSKR that discovers the top-k keywords based on their frequency in pairs of friends located within a spatial area. For each query, we develop a processing algorithm that utilizes a novel hybrid index. Finally, we evaluate our framework with thorough experiments using real datasets.


Query Processing Query Point Bloom Filter Social Graph Inverted List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Facebook ads, audience targeting.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Armenatzoglou, N., Papadopoulos, S., Papadias, D.: A general framework for geo-social query processing. Proc. VLDB Endow. 6(10), 913–924 (2013)CrossRefGoogle Scholar
  6. 6.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. of ACM 13(7), 422–426 (1970)zbMATHCrossRefGoogle Scholar
  7. 7.
    Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD (2011)Google Scholar
  8. 8.
    Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. Proc. VLDB Endow. 6(3), 217–228 (2013)CrossRefGoogle Scholar
  9. 9.
    Chen, Y.-Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web search engines. In: SIGMOD (2006)Google Scholar
  10. 10.
    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. Proc. VLDB Endow. 2(1), 337–348 (2009)CrossRefGoogle Scholar
  11. 11.
    De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: ICDE (2008)Google Scholar
  12. 12.
    Kalashnikov, D.V., Prabhakar, S., Hambrusch, S.E.: Main memory evaluation of monitoring queries over moving objects. Distrib. Parallel Databases 15(2), 117–135 (2004)CrossRefGoogle Scholar
  13. 13.
    Kargar, M., An, A.: Discovering top-k teams of experts with/without a leader in social networks. In: CIKM (2011)Google Scholar
  14. 14.
    Kargar, M., An, A.: Keyword search in graphs: finding r-cliques. Proc. VLDB Endow. 4(10), 681–692 (2011)CrossRefGoogle Scholar
  15. 15.
    Khodaei, A., Shahabi, C., Li, C.: Hybrid indexing and seamless ranking of spatial and textual features of web documents. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 450–466. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  16. 16.
    Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In: SIGKDD (2009)Google Scholar
  17. 17.
    Liu, W., Sun, W., Chen, C., Huang, Y., Jing, Y., Chen, K.: Circle of friend query in geo-social networks. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part II. LNCS, vol. 7239, pp. 126–137. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  18. 18.
    Long, C., Wong, R.C.-W., Wang, K., Fu, A.W.-C.: Collective spatial keyword queries: a distance owner-driven approach. In: SIGMOD (2013)Google Scholar
  19. 19.
    Mouratidis, K., Li, J., Tang, Y., Mamoulis, N.: Joint search by social and spatial proximity. IEEE Trans. Knowl. Data Eng. 10(16), 1169–1184 (2015)Google Scholar
  20. 20.
    Vaid, S., Jones, C.B., Joho, H., Sanderson, M.: Spatio-textual Indexing for geographical search on the web. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 218–235. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  21. 21.
    Otto, A., Kaulfersch, E., Brinkfeldt, K., Neumaier, K., Zschieschang, O., Andersson, D., Rzepka, S.: Reliability of new SiC BJT power modules for fully electric vehicles. In: Fischer-Wolfarth, J., Meyer, G. (eds.) Advanced Microsystems for Automotive Applications 2014. LNMOB, vol. 1, pp. 235–244. Springer, Heidelberg (2014) Google Scholar
  22. 22.
    Yang, D.-N., Shen, C.-Y. Lee, W.-C., Chen, M.-S.: On socio-spatial group query for location-based social networks. In: KDD (2012)Google Scholar
  23. 23.
    Zhang, D., Chee, Y.M., Mondal, A., Tung, A., Kitsuregawa, M.: Keyword search in spatial databases: towards searching by document. In: ICDE (2009)Google Scholar
  24. 24.
    Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma. W.-Y.: Hybrid index structures for location-based web search. In: CIKM (2005)Google Scholar
  25. 25.
    Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38(2), 6.1–6.56 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ritesh Ahuja
    • 1
  • Nikos Armenatzoglou
    • 1
  • Dimitris Papadias
    • 1
    Email author
  • George J. Fakas
    • 1
  1. 1.Department of Computer Science and EngineeringHong Kong University of Science and TechnologyHong KongChina

Personalised recommendations