Combining Differential Privacy and PIR for Efficient Strong Location Privacy

  • Eric Fung
  • Georgios Kellaris
  • Dimitris PapadiasEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9239)


Data privacy is a huge concern nowadays. In the context of location based services, a very important issue regards protecting the position of users issuing queries. Strong location privacy renders the user position indistinguishable from any other location. This necessitates that every query, independently of its location, should retrieve the same amount of information, determined by the query with the maximum requirements. Consequently, the processing cost and the response time are prohibitively high for datasets of realistic sizes. In this paper, we propose a novel solution that offers both strong location privacy and efficiency by adjusting the accuracy of the query results. Our framework seamlessly combines the concepts of \(\epsilon \)-differential privacy and private information retrieval (PIR), exploiting query statistics to increase efficiency without sacrificing privacy. We experimentally show that the proposed approach outperforms the current state-of-the-art by orders of magnitude, while introducing only a small bounded error.



This work was supported by GRF grant 618011 from Hong Kong RGC.


  1. 1.
    Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Böhm, C.: A cost model for query processing in high dimensional data spaces. TODS 25(2), 129–178 (2000)CrossRefGoogle Scholar
  3. 3.
    Chan, T.-H.H., Shi, E., Song, D.: Private and continual release of statistics. TISSEC 14(3), 26:1–26:24 (2011)CrossRefGoogle Scholar
  4. 4.
    Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM (JACM) 45(6), 965–981 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  6. 6.
    Duckham, M., Kulik, L.: Simulation of obfuscation and negotiation for location privacy. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 31–48. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  7. 7.
    Dwork, C.: A firm foundation for private data analysis. CACM 54(1), 86–95 (2011)CrossRefGoogle Scholar
  8. 8.
    Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  9. 9.
    Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under continual observation. In: STOC (2010)Google Scholar
  10. 10.
    Gasarch, W.: A survey on private information retrieval. Bull. EATCS 82, 72–107 (2004)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Ghinita, G.: Privacy for location-based services. Synth. Lect. Inf. Secur. Priv. Trust 4(1), 1–85 (2013)Google Scholar
  12. 12.
    Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.-L.: Private queries in location based services: anonymizers are not necessary. In: SIGMOD (2008)Google Scholar
  13. 13.
    Ghinita, G., Kalnis, P., Skiadopoulos, S.: PRIVE: anonymous location-based queries in distributed mobile systems. In: WWW (2007)Google Scholar
  14. 14.
    Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based identity inference in anonymous spatial queries. IEEE Trans. Knowl. Data Eng. 19(12), 1719–1733 (2007)CrossRefGoogle Scholar
  15. 15.
    Khoshgozaran, A., Shahabi, C., Shirani-Mehr, H.: Location privacy; moving beyond k-anonymity, cloaking and anonymizers. KAIS 26, 435–465 (2010)Google Scholar
  16. 16.
    Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique using dummies for location-based services. In: ICPS (2005)Google Scholar
  17. 17.
    Korn, F., Pagel, B.-U., Faloutsos, C.: On the ‘dimensionality curse’ and the ‘self-similarity blessing’. TKDE 13(1), 96–111 (2001)Google Scholar
  18. 18.
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 364–364. IEEE Computer Society (1997)Google Scholar
  19. 19.
    McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, pp. 19–30. ACM (2009)Google Scholar
  20. 20.
    Mokbel, M.F., Chow, C.-Y., Aref, W.G.: The new casper: query processing for location services without compromising privacy. In: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 763–774. VLDB Endowment (2006)Google Scholar
  21. 21.
    Ostrovsky, R., Skeith III, W.E.: A survey of single-database private information retrieval: techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  22. 22.
    Pagel, B.-U., Korn, F., Faloutsos, C.: Deflating the dimensionality curse using multiple fractal dimensions. In: ICDE (2000)Google Scholar
  23. 23.
    Papadopoulos, S., Bakiras, S., Papadias, D.: Nearest neighbor search with strong location privacy. Proc. VLDB Endow. 3(1–2), 619–629 (2010)CrossRefGoogle Scholar
  24. 24.
    Shang, N., Ghinita, G., Zhou, Y., Bertino, E.: Controlling data disclosure in computational pir protocols. In: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security, pp. 310–313. ACM (2010)Google Scholar
  25. 25.
    Sion, R., Carbunar, B.: On the computational practicality of private information retrieval. In: Proceedings of the Network and Distributed Systems Security Symposium (2007)Google Scholar
  26. 26.
    Wang, S., Agrawal, D., El Abbadi, A.: Generalizing PIR for practical private retrieval of public data. In: Foresti, S., Jajodia, S. (eds.) Data and Applications Security and Privacy XXIV. LNCS, vol. 6166, pp. 1–16. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  27. 27.
    Williams, P., Sion, R.: Usable PIR. In: NDSS (2008)Google Scholar
  28. 28.
    Yiu, M.L., Jensen, C., Huang, X., Lu, H.: SpaceTwist: managing the trade-offs among location privacy, query performance, and query accuracy in mobile systems. In: ICDE (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Eric Fung
    • 1
  • Georgios Kellaris
    • 1
  • Dimitris Papadias
    • 1
    Email author
  1. 1.Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations