RICC: Fast Reachability Query Processing on Large Spatiotemporal Datasets

  • Elena V. StrzheletskaEmail author
  • Vassilis J. Tsotras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9239)


Spatiotemporal reachability queries arise naturally when determining how diseases, information, physical items can propagate through a collection of moving objects; such queries are significant for many important domains like epidemiology, public health, security monitoring, surveillance, and social networks. While traditional reachability queries have been studied in graphs extensively, what makes spatiotemporal reachability queries different and challenging is that the associated graph is dynamic and space-time dependent. As the spatiotemporal dataset becomes very large over time, a solution needs to be I/O-efficient. Previous work assumes an ‘instant exchange’ scenario (where information can be instantly transferred and retransmitted between objects), which may not be the case in many real world applications. In this paper we propose the RICC (Reachability Index Construction by Contraction) approach for processing spatiotemporal reachability queries without the instant exchange assumption. We tested our algorithm on two types of realistic datasets using queries of various temporal lengths and different types (with single and multiple sources and targets). The results of our experiments show that RICC can be efficiently used for answering a wide range of spatiotemporal reachability queries on disk-resident datasets.


  1. 1.
    Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient managemet on transitive relationships in large data and knowledge bases. In: ACM SIGMOD, pp. 253–262 (1989)Google Scholar
  2. 2.
    Bakalov, P., Hadjieleftheriou, M., Keogh, E., Tsotras, V.J.: Efficient trajectory joins using symbolic representations. In: MDM, pp. 86–93 (2005)Google Scholar
  3. 3.
    Brinkhoff, T., et al.: Generating traffic data. Data Eng. Bull. 26(2), 19–25 (2003)Google Scholar
  4. 4.
    Cai, J., Poon, C.K.: Path-hop: efficiently indexing large graphs for reachability queries. In: 19th ACM CIKM, pp. 119–128 (2010)Google Scholar
  5. 5.
    Cai, Y., Ng, R.: Indexing spatio-temporal trajectories with chebyshev polynomials. In: ACM SIGMOD, pp. 599–610 (2004)Google Scholar
  6. 6.
    Chen, S., Ooi, B.C., Tan, K., Nascimento, M.: St2b-tree: a self-tunable spatio-temporal b+-tree index for moving objects. In: ACM SIGMOD, pp. 29–42 (2008)Google Scholar
  7. 7.
    Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    De Almeida, V.T., Güting, R.H.: Indexing the trajectories of moving objects in networks. Geoinformatica 9(1), 33–60 (2005)CrossRefGoogle Scholar
  9. 9.
    Geisberger, R., Rice, M.N., Sanders, P., Tsotras, V.J.: Route planning with flexible edge restrictions. ACM J. Exp. Algorithms 17(1), 1–20 (2012)MathSciNetGoogle Scholar
  10. 10.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: 7th International Conference on Experimental algorithms (2008)Google Scholar
  11. 11.
    Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Efficient indexing of spatiotemporal objects. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 251–268. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  12. 12.
    Jensen, C., Lin, D., Ooi, B.: Continuous clustering of moving objects. IEEE TKDE 19, 1161–1174 (2007)Google Scholar
  13. 13.
    Jeung, H., Yiu, M., Zhou, X., Jensen, C., Shen, H.: Discovery of convoys in trajectory databases. PVLDB 1, 1068–1080 (2008)Google Scholar
  14. 14.
    Jin, E., Ruan, N., Dey, S., Xu, J.Y.: Scarab: scaling reachability computation on large graphs. In: ACM SIGMOD, pp. 169–180 (2012)Google Scholar
  15. 15.
    Jin, R., Xiang, Y., Ruan, N., Fuhry, D.: 3-hop: a high-compression indexing scheme for reachability query. In: ACM SIGMOD, pp. 813–826 (2009)Google Scholar
  16. 16.
    Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  17. 17.
    Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data. In: IEEE ICDE, pp. 997–1008 (2013)Google Scholar
  18. 18.
    Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: ACM PODS, pp. 261–272 (1999)Google Scholar
  19. 19.
    Merz, F., Sanders, P.: PReaCH: a fast lightweight reachability index using pruning and contraction hierarchies. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 701–712. Springer, Heidelberg (2014) Google Scholar
  20. 20.
    Nguyen-Dinh, L.V., Aref, W.G., Mokbel, M.F.: Spatio-temporal access methods: part2 (2003–2010). IEEE Data Eng. Bull. 33(2), 46–55 (2010)Google Scholar
  21. 21.
    Ni, J., Ravishankar, C.V.: Indexing spatiotemporal trajectories with efficient polynomial approximation. IEEE TKDE 19, 663–678 (2007)Google Scholar
  22. 22.
    Patel, J.M., Chen, Y., Chakka, V.P.: Stripes: an efficient index for predicted trajectories. In: ACM SIGMOD (2004)Google Scholar
  23. 23.
    Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving object trajectories. In: 26th VLDB Conference, pp. 395–406 (2000)Google Scholar
  24. 24.
    Shirani-Mehr, H., Banaei-Kashani, F., Shahabi, C.: Efficient reachability query evaluation in large spatiotemporal contact datasets. PVLDB 5(9), 848–859 (2012)Google Scholar
  25. 25.
    Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Characterising temporal distance and reachability in mobile and online social networks. ACM SIGCOMM Comput. Commun. Rev. 40(1), 118–124 (2010)CrossRefGoogle Scholar
  26. 26.
    Vieira, M.R., Bakalov, P., Tsotras, V.J.: On-line discovery of flock patterns in spatio-temporal data. In: GIS, pp. 286–295. ACM (2009)Google Scholar
  27. 27.
    Šaltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving objects. In: ACM SIGMOD, pp. 331–342 (2000)Google Scholar
  28. 28.
    Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: answering graph reachability queries in constant time. In: ICDE 2006 (2006)Google Scholar
  29. 29.
    Xiong, X., Mokbel, M.F., Aref, W.G.: Lugrid: Update-tolerant grid-based indexing for moving objects. In: MDM (2006)Google Scholar
  30. 30.
    Yildirim, H., Chaoji, V., Zaki, M.J.: GRAIL: scalable reachability index for large graphs. PVLDB 3, 276–284 (2010)Google Scholar
  31. 31.
    Yiu, M.L., Tao, Y., Mamoulis, N.: The bdual-tree: Indexing moving objects by space filling curves in the dual space. VLDB J. 17(3), 379–400 (2008)CrossRefGoogle Scholar
  32. 32.
    Yufei, T., Papadias, D., Sun, J.: The tpr*-tree: An optimized spatio-temporal access method for predictive queries. In: 29th VLDB Conference (2003)Google Scholar
  33. 33.
    Zhu, A.D., Lin, W., Wang, S., Xiao, X.: Reachability queries on large dynamic graphs: a total order approach. In: ACM SIGMOD pp. 1323–1334 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of CaliforniaRiversideUSA

Personalised recommendations