Skip to main content

Subword Metrics for Infinite Words

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9223))

Included in the following conference series:

  • 533 Accesses

Abstract

The space of one-sided infinite words plays a crucial rôle in several parts of Theoretical Computer Science. Usually, it is convenient to regard this space as a metric space, the Cantor-space. It turned out that for several purposes topologies other than the one of the Cantor-space are useful, e.g. for studying fragments of first-order logic over infinite words or for a topological characterisation of random infinite words.

Continuing the work of [14], here we consider two different refinements of the Cantor-space, given by measuring common factors, and common factors occurring infinitely often. In particular we investigate the relation of these topologies to the sets of infinite words definable by finite automata, that is, to regular \(\omega \)-languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Observe that the relation \(\sim _{P}\) defined by \(w \sim _{P} v\) iff \(P/w=P/v\) is the Nerode right congruence of P.

  2. 2.

    It is convenient to choose \(r=|X|\). Then every ball of radius \(r^{-n}\) is partitioned into exactly r balls of radius \(r^{-(n+1)}\).

  3. 3.

    Observe that \(e\notin {\mathbf {pref}(\xi )}\,\mathsf {\Delta }\,{\mathbf {pref}(\eta )}\) and Eq. (1) imply \(\rho (\xi ,\eta ) = \inf \{r^{-|w|}: w\sqsubset \xi \wedge w\sqsubset \eta \}\).

  4. 4.

    Those sequences are usually referred to as Cauchy sequences.

  5. 5.

    They are also closed balls of radius \(r^{-(n+1)}\).

  6. 6.

    A point \(\xi \) is referred to as isolated if \(\rho '(\xi , \eta )\ge \epsilon _{\xi }\) for all \(\eta \ne \xi \). Here the distance \(\epsilon _{\xi }>0\) may depend on \(\xi \).

  7. 7.

    In particular, they satisfy \(F^{(\tau )}_{\gamma }/w=F^{(\tau )}_{\gamma } \) for all \(w\in X^{*}\).

References

  1. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proceedings of the 1960 International Congress for Logic, pp. 1–11. Stanford Univ. Press, Stanford (1962)

    Google Scholar 

  2. Calude, C.S., Marcus, S., Staiger, L.: A topological characterization of random sequences. Inform. Process. Lett. 88, 245–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calude, C.S., Jürgensen, H., Staiger, L.: Topology on words. Theoret. Comput. Sci. 410, 2323–2335 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Diekert, V., Kufleitner, M.: Fragments of first-order logic over infinite words. In: Albers, S., Marion, J.-Y. (eds.) Proceedings of the STACS 2009, pp. 325–336. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2009)

    Google Scholar 

  5. Engelking, R.: General Topology. Państwowe wydawnictwo naukowe, Warszawa (1977)

    MATH  Google Scholar 

  6. Fernau, H., Staiger, L.: Iterated function systems and control languages. Inform. Comput. 168, 125–143 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hoffmann, S.: Metriken zur Verfeinerung des Cantor-Raumes auf \(X^{\omega }\). Diploma thesis, Martin-Luther-Universität Halle-Wittenberg (2014)

    Google Scholar 

  8. Landweber, L.H.: Decision problems for \(\omega \)-automata. Math. Syst. Theory 3, 376–384 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  10. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Inform. Control 9, 521–530 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. Perrin, D., Pin, J.-E.: Infinite Words. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  12. Redziejowski, R.R.: Infinite word languages and continuous mappings. Theoret. Comput. Sci. 43, 59–79 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)

    MATH  Google Scholar 

  14. Schwarz, S., Staiger, L.: Topologies refining the Cantor topology on \(X^{\omega }\). In: Calude, C.S., Sassone, V. (eds.) Theoretical Computer Science. IFIP, vol. 323, pp. 271–285. Springer, Berlin (2010)

    Chapter  Google Scholar 

  15. Staiger, L.: Finite-state \(\omega \)-languages. J. Comput. Syst. Sci. 27, 434–448 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Staiger, L.: Sequential mappings of \(\omega \)-languages. ITA 21, 147–173 (1987)

    MathSciNet  Google Scholar 

  17. Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Inf. Comput. 103, 159–194 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Staiger, L.: \(\omega \)-languages. In: [13], vol. 3, pp. 339–387

    Google Scholar 

  19. Staiger, L.: Weighted finite automata and metrics in Cantor Space. J. Automata Lang. Comb. 8, 353–360 (2003)

    MathSciNet  Google Scholar 

  20. Staiger, L.: Topologies for the set of disjunctive \(\omega \)-words. Acta Cybern. 17, 43–51 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Staiger, L.: Asymptotic subword complexity. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 236–245. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Staiger, L., Wagner, K.: Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen. Elektronische Informationsverarbeitung und Kybernetik 10, 379–392 (1974)

    MathSciNet  MATH  Google Scholar 

  23. Thomas, W.: Automata on infinite objects. In: Van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 133–191. Elsevier, Amsterdam (1990)

    Google Scholar 

  24. Thomas, W.: Languages, automata, and logic. In: [13], vol. 3, pp. 389–455

    Google Scholar 

  25. Trakhtenbrot, B.A.: Finite automata and monadic second order logic. Sibirsk. Mat. Ž. 3, 103–131 (1962). (Russian; English translation: AMS Transl. 59, 23–55, (1966))

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwig Staiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hoffmann, S., Staiger, L. (2015). Subword Metrics for Infinite Words. In: Drewes, F. (eds) Implementation and Application of Automata. CIAA 2015. Lecture Notes in Computer Science(), vol 9223. Springer, Cham. https://doi.org/10.1007/978-3-319-22360-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22360-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22359-9

  • Online ISBN: 978-3-319-22360-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics