Skip to main content

Archaeofaunal Diversity and Broad Spectrum Diets in Late Paleolithic Southwest Europe

  • Chapter
  • 354 Accesses

Part of the book series: SpringerBriefs in Archaeology ((BRIEFSARCHAE))

Abstract

Chapter 4 showed that subsistence strategies from Late Paleolithic Southwest Europe differed by region. If diets broadened in Southwest Europe at the Pleistocene–Holocene transition, it seems they did so regionally. Zooarchaeological studies focused on specific sites and/or localities support this hypothesis, both descriptively and quantitatively: many have observed broad spectrum diets in the earliest Upper Paleolithic in the Mediterranean bioclimatic region of Iberia, while in southern France, some suggest broader diets appear in response to the Bølling/Alleröd warming around 13 kya BP. In Euro-Siberian Iberia there may be increasing diet breadth in early Holocene, though there is evidence of resource intensification much earlier. In this chapter, I use the richness, evenness, and nestedness of archaeological faunas to explore the if, when, how, and why of increasing diet breadth in Late Paleolithic Southwest Europe.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D., & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos, 117, 1227–1239. doi:10.1111/j.0030-1299.2008.16644.x.

    Article  Google Scholar 

  • Almeida-Neto, M., & Ulrich, W. (2011). A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling & Software, 26, 173–178. doi:http://dx.doi.org/10.1016/j.envsoft.2010.08.003.

    Google Scholar 

  • Altuna, J. (1972). Fauna de mamíferos de los yacimientos prehistóricos de Guipúzcoa. Munibe, 24, 1–465.

    Google Scholar 

  • Álvarez-Lao, D. J., & García, N. (2010). Chronological distribution of Pleistocene cold-adapted large mammal faunas in the Iberian Peninsula. Quaternary International, 212, 120–128.

    Article  Google Scholar 

  • Atmar, W., & Patterson, B. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373–382. doi:10.1007/bf00317508.

    Article  Google Scholar 

  • Bascompte, J., Jordano, P., Melián, C. J., & Olesen, J. M. (2003). The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences, 100, 9383–9387. doi:10.1073/pnas.1633576100.

    Article  Google Scholar 

  • Bilsborough, S., & Mann, N. (2006). A review of issues of dietary protein intake in humans. International Journal of Sport Nutrition & Exercise Metabolism, 16, 129–152.

    Google Scholar 

  • Callou, C. (2003). De la garenne au clapier. Histoire et archéologie du lapin européen. Paris: Publications scientifiques du Muséum.

    Google Scholar 

  • Cannon, M. D. (1999). A mathematical model of the effects of screen size on zooarchaeological relative abundance measures. Journal of Archaeological Science, 26, 205–214.

    Article  Google Scholar 

  • Cochard, D. (2004). Les léporidés dans la subsistance paléolithique du Sud de la France. Talence: Université de Bordeaux I. Thèse de doctorat.

    Google Scholar 

  • Conrad, C. (2015). Archaeozoology in Mainland Southeast Asia: Changing Methodology and Pleistocene to Holocene Forager Subsistence Patterns in Thailand and Peninsular Malaysia. Open Quaternary, 1, 1–23. doi:http://dx.doi.org/10.5334/oq.af.

  • Cortés-Sánchez, M., Morales-Muñiz, A., Simón-Vallejo, M. D., Bergadà-Zapata, M. M., Delgado-Huertas, A., López-García, P., et al. (2008). Palaeoenvironmental and cultural dynamics of the coast of Málaga (Andalusia, Spain) during the Upper Pleistocene and early Holocene. Quaternary Science Reviews, 27, 2176–2193. doi:http://dx.doi.org/10.1016/j.quascirev.2008.03.010.

    Google Scholar 

  • Dapporto, L., Fattorini, S., Vodă, R., Dincă, V., & Vila, R. (2014). Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity. Journal of Biogeography, 41, 1639–1650. doi:10.1111/jbi.12315.

    Article  Google Scholar 

  • Dean, R. M. (2007a). Hunting intensification and the Hohokam “collapse”. Journal of Anthropological Archaeology, 26, 109–132. doi:10.1016/j.jaa.2006.03.010.

    Article  Google Scholar 

  • Dean, R. M. (2007b). The lagomorph index: Rethinking rabbit bones in Hohokam sites. Kiva, 73, 7–30.

    Article  Google Scholar 

  • Delpech, F. (1983). La faune du Paléolithique supérieur dans le Sud-Ouest de la France. Paris: Cahier du Quaternaire.

    Google Scholar 

  • Delpech, F. (1999). Biomasse d’ongulés au Paléolithique et inférences sur la démographie. Paléo, 11, 19–42.

    Article  Google Scholar 

  • Dobrovolski, R., Melo, A. S., Cassemiro, F. A. S., & Diniz-Filho, J. A. F. (2012). Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 21, 191–197. doi:10.1111/j.1466-8238.2011.00671.x.

    Article  Google Scholar 

  • Driver, J. C., & Woiderski, J. R. (2008). Interpretation of the “lagomorph index” in the American Southwest. Quaternary International, 185, 3–11. doi:http://dx.doi.org/10.1016/j.quaint.2007.09.022.

    Google Scholar 

  • Flannery, K. V. (1969). Origins and ecological effects of early domestication in Iran and the Near East. In P. J. Ucko & G. W. Dimbleby (Eds.), The domestication and exploitation of plants and animals (pp. 73–100). Chicago: Aldine.

    Google Scholar 

  • Gilarranz, L. J., Sabatino, M., Aizen, M. A., & Bascompte, J. (2015). Hot spots of mutualistic networks. Journal of Animal Ecology, 84, 407–413. doi:10.1111/1365-2656.12304.

    Article  Google Scholar 

  • Gómez-Olivencia, A., Arceredillo, D., Álvarez-Lao, D. J., Garate, D., San Pedro, Z., Castaños, P., et al. (2014). New evidence for the presence of reindeer (Rangifer tarandus) on the Iberian Peninsula in the Pleistocene: An archaeopalaeontological and chronological reassessment. Boreas, 43, 286–308. doi:10.1111/bor.12037.

    Article  Google Scholar 

  • Grayson, D. K. (1984). Quantitative zooarchaeology. New York: Academic Press.

    Google Scholar 

  • Grayson, D. K., & Delpech, F. (1998). Changing diet breadth in the Early Upper Paleolithic of southwestern France. Journal of Archaeological Science, 25, 1119–1130.

    Article  Google Scholar 

  • Grayson, D. K., & Delpech, F. (2002). Specialized early Upper Paleolithic hunters in Southwestern France? Journal of Archaeological Science, 29, 1439–1449.

    Article  Google Scholar 

  • Grayson, D. K., Delpech, F., Rigaud, J.-P., & Simek, J. F. (2001). Explaining the development of dietary dominance by a single ungulate taxon at Grotte XVI, Dordogne, France. Journal of Archaeological Science, 28, 115–125.

    Article  Google Scholar 

  • Guimarães, P., & Guimarães, P. R. (2006). Improving the analyses of nestedness for large sets of matrices. Environmental Modelling and Software, 21, 1512–1513.

    Article  Google Scholar 

  • Hockett, B. S., & Bicho, N. F. (2000). The rabbits of Picareiro Cave: small mammal hunting during the Late Upper Palaeolithic in the Portuguese Estremadura. Journal of Archaeological Science, 27, 715–723.

    Article  Google Scholar 

  • Hockett, B. S., & Haws, J. A. (2002). Taphonomic and methodological perspectives of leporid hunting during the Upper Paleolithicof the Western Mediterranean Basin. Journal of Archaeological Method and Theory, 9, 269–302.

    Article  Google Scholar 

  • Hockett, B. S., & Haws, J. A. (2003). Nutritional ecology and diachronic trends in Paleolithic diet and health. Evolutionary Anthropology, 12, 211–216.

    Article  Google Scholar 

  • Husemann, M., Schmitt, T., Zachos, F. E., Ulrich, W., & Habel, J. C. (2014). Palaearctic biogeography revisited: Evidence for the existence of a North African refugium for Western Palaearctic biota. Journal of Biogeography, 41, 81–94. doi:10.1111/jbi.12180.

    Article  Google Scholar 

  • Jones, E. L. (2004a). Dietary evenness, prey choice, and human-environment interactions. Journal of Archaeological Science, 31, 307–317.

    Article  Google Scholar 

  • Jones, E. L. (2004b). The European Rabbit (Oryctolagus cuniculus) and the development of broad spectrum diets in southwestern France: Data from the Dordogne Valley. In J.-P. Brugal & J. Desse (Eds.), Petits animaux et sociétés humaines: du complément alimentaire aux ressources utilitaires (pp. 223–234). Antibes: Éditions APDCA.

    Google Scholar 

  • Jones, E. L. (2006). Prey choice, mass collecting, and the wild European rabbit (Oryctolagus cuniculus). Journal of Anthropological Archaeology, 25, 275–289.

    Article  Google Scholar 

  • Jones, E. L. (2012). Upper Paleolithic rabbit exploitation and landscape patchiness: The Dordogne vs. MediterraneanSpain. Quaternary International, 264, 52–60.

    Article  Google Scholar 

  • Jones, E. L. (2013a). Mobility, settlement, and resource patchiness in Upper Paleolithic Iberia. Quaternary International, 318, 46–52. doi:http://dx.doi.org/10.1016/j.quaint.2013.05.027.

    Google Scholar 

  • Jones, E. L. (2013b). Subsistence change among the 17th-century Diné? A reanalysis of the faunas from the Fruitland Data Recovery Project. Journal of Ethnobiology, 33, 148–166. doi:10.2993/0278-0771-33.1.148.

    Article  Google Scholar 

  • Jones, E. L. (2015). Archaeofaunal evidence of human adaptation to climate change in Upper Paleolithic Iberia. Journal of Archaeological Science: Reports, 2, 257–263. doi:http://dx.doi.org/10.1016/j.jasrep.2015.02.008.

    Google Scholar 

  • Jones, E. L. (2016). Changing landscapes of early colonial New Mexico: Demography, rebound, and zooarchaeology. In C. Herhahn, & A. F. Ramenofsky (Eds.), How, why, and beyond: exploring cause and explanation in historical ecology, demography, and movement. Boulder, CO: University of Colorado Press.

    Google Scholar 

  • Jones, E. L., & Gabe, C. (2015). The promise and peril of older collections: meta-analyses in the American Southwest. Open Quaternary, 1, 1–13. doi: http://doi.org/10.5334/oq.ag.

  • Lopez-Martinez, N. (2008). The lagomorph fossil record and the origin of the European rabbit. In P. C. Alves, N. Ferrand, & K. Hackländer (Eds.), Lagomorph biology (pp. 27–46). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Lupo, K. D. (2007). Evolutionary foraging models in zooarchaeological analysis: recent applications and future challenges. Journal of Archaeological Research, 15, 143–189. doi:10.1007/s10814-007-9011-1.

    Article  Google Scholar 

  • Lyman, R. L. (2008). Quantitative paleozoology. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Lyman, R. L. (2015). On the variable relationship between NISP and NTAXA in bird remains and in mammal remains. Journal of Archaeological Science, 53, 291–296. doi: http://dx.doi.org/10.1016/j.jas.2014.10.027.

    Google Scholar 

  • Magurran, A. E. (2004). Measuring biological diversity. Malden, MA: Blackwell.

    Google Scholar 

  • Magurran, A. E., & McGill, B. J. (2011). Biological diversity: frontiers in measurement and assessment. New York: Oxford University Press.

    Google Scholar 

  • Marín Arroyo, A. B. (2013). Human response to Holocene warming on the Cantabrian Coast (northern Spain): an unexpected outcome. Quaternary Science Reviews, 81, 1–11. doi:http://dx.doi.org/10.1016/j.quascirev.2013.09.006.

    Google Scholar 

  • Morrison, A. E., & Hunt, T. L. (2007). Human Impacts on the Nearshore Environment: An archaeological case study from Kauai, Hawaiian Islands. University of Hawaii Press Pacific Science, 61, 325–345.

    Google Scholar 

  • Mouillot, D., De Bortoli, J., Leprieur, F., Parravicini, V., Kulbicki, M., & Bellwood, D. R. (2013). The challenge of delineating biogeographical regions: nestedness matters for Indo-Pacific coral reef fishes. Journal of Biogeography, 40, 2228–2237. doi:10.1111/jbi.12194.

    Article  Google Scholar 

  • Munro, N. D. (2004). Zooarchaeological measures of hunting pressure and occupation intensity in the Natufian. Current Anthropology, 45, S5–S33.

    Article  Google Scholar 

  • Nagaoka, L. (2001). Using diversity indices to measure changes in prey choice at the Shag River Mouth Site, Southern New Zealand. International Journal of Osteoarchaeology, 11, 101–111.

    Article  Google Scholar 

  • Nagaoka, L. (2002). The effects of resource depression on foraging efficiency, diet breadth and patch use in southern New Zealand. Journal of Anthropological Archaeology, 21, 419–442.

    Article  Google Scholar 

  • Nagaoka, L. (2005). Differential recovery of Pacific Island fish remains. Journal of Archaeological Science, 32, 941–955. doi:10.1016/j.jas.2004.12.011.

    Article  Google Scholar 

  • Nelson, M. C., & Schollmeyer, K. G. (2003). Game resources, social interaction, and the ecological footprint in southwest New Mexico. Journal of Archaeological Method and Theory, 10, 69–110.

    Article  Google Scholar 

  • Patterson, B. D., & Atmar, W. (1995). The nestedness calculator: a visual basic program, including 294 presence-absence matrices. Chicago: AICS Research and the Field Museum.

    Google Scholar 

  • Peres, T. M. (2010). Methodological Issues in Zooarchaeology. In A. M. VanDerwarker & T. M. Peres (Eds.), Integrating zooarchaeology and paleoethnobotany: A consideration of issues, methods, and cases (pp. 15–36). New York: Springer.

    Chapter  Google Scholar 

  • Pokines, J. T. (2000). Microfaunal research design in the Cantabrian Spanish Paleolithic. Journal of Anthropological Research, 56, 95–112.

    Google Scholar 

  • Rillardon, M., & Brugal, J.-P. (2014). What about the Broad Spectrum RevolutionSubsistence strategy of hunter–gatherers in Southeast France between 20 and 8 ka BP. Quaternary International, 337, 129–153. doi:http://dx.doi.org/10.1016/j.quaint.2014.01.020.

    Google Scholar 

  • Schaffer, B. S., & Sanchez, J. L. J. (1994). Comparison of 1/8”- and 1/4”-mesh recovery of controlled samples of small-to-medium-sized mammals. American Antiquity, 59, 525–530.

    Article  Google Scholar 

  • Schollmeyer, K. G. (2011). Large game, agricultural land, and settlement pattern change in the eastern Mimbres area, southwest New Mexico. Journal of Anthropological Archaeology, 30, 402–415. doi:10.1016/j.jaa.2011.04.004.

    Article  Google Scholar 

  • Sommer, R. S., Kalbe, J., Ekström, J., Benecke, N., & Liljegren, R. (2013). Range dynamics of the reindeer in Europe during the last 25,000 years. Journal of Biogeography, 41, 298–306. doi:10.1111/jbi.12193.

    Article  Google Scholar 

  • Sommer, R. S., Zachos, F. E., Street, M., Jöris, O., Skog, A., & Benecke, N. (2008). Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quaternary Science Reviews, 27, 714–733.

    Article  Google Scholar 

  • Speth, J. D., & Spielmann, K. A. (1983). Energy source, protein metabolism, and hunter-gatherer subsistence strategies. Journal of Anthropological Archaeology, 2, 1–31.

    Article  Google Scholar 

  • Stahl, P. W. (1996). The recovery and interpretation of microvertebrate bone assemblages from archaeological contexts. Journal of Archaeological Method and Theory, 3, 31–75.

    Article  Google Scholar 

  • Stiner, M. C., & Munro, N. D. (2002). Approaches to prehistoric diet breadth, demography, and prey ranking systems in time and space. Journal of Archaeological Method and Theory, 9, 181–214.

    Article  Google Scholar 

  • Strona, G., Nappo, D., Boccacci, F., Fattorini, S., & San-Miguel-Ayanz, J. (2014). A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nature Communications, 5, 4414. doi:10.1038/ncomms5114.

    Article  Google Scholar 

  • Stutz, A. J., Munro, N. D., & Bar-Oz, G. (2009). Increasing the resolution of the Broad Spectrum Revolution in the Southern Levantine Epipaleolithic (19–12 ka). Journal of Human Evolution, 56, 294–306. doi:http://dx.doi.org/10.1016/j.jhevol.2008.10.004.

    Google Scholar 

  • Svenning, J.-C., Fløjgaard, C., & Baselga, A. (2011). Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction. Journal of Animal Ecology, 80, 393–402. doi:10.1111/j.1365-2656.2010.01771.x.

    Article  Google Scholar 

  • Ugan, A. (2005). Climate, bone density, and resource depression: What is driving variation in large and small game in Fremont archaeofaunas? Journal of Anthropological Archaeology, 24, 227–251. doi:10.1016/j.jaa.2005.05.002.

    Article  Google Scholar 

  • Villaverde, V., Aura, J. E., & Barton, C. M. (1998). The Upper Paleolithic in Mediterranean Spain: A review of current evidence. Journal of World Prehistory, 12, 121–198.

    Article  Google Scholar 

  • Wolverton, S., Dombrosky, J., & Lyman, R. L. (2014). Practical Significance: Ordinal Scale Data and Effect Size in Zooarchaeology. International Journal of Osteoarchaeology. doi:10.1002/oa.2416.

    Google Scholar 

  • Zar, J. H. (1999). Biostatistical analysis. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Zhang, Y., Zhang, S., Xu, X., Liu, D., Wang, C., Pei, S., et al. (2013). Zooarchaeological perspective on the Broad Spectrum Revolution in the Pleistocene-Holocene transitional period, with evidence from Shuidonggou Locality 12, China. Science China Earth Sciences, 56, 1487–1492. doi:10.1007/s11430-013-4584-7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Jones, E.L. (2016). Archaeofaunal Diversity and Broad Spectrum Diets in Late Paleolithic Southwest Europe. In: In Search of the Broad Spectrum Revolution in Paleolithic Southwest Europe. SpringerBriefs in Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-22351-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22351-3_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22350-6

  • Online ISBN: 978-3-319-22351-3

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics