Skip to main content

Morphogenic Peptides in Regeneration of Load Bearing Tissues

  • Chapter
Engineering Mineralized and Load Bearing Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 881))

Abstract

Morphogenic proteins due to their short half-life require high doses of growth factors in regeneration of load bearing tissues which leads to undesirable side effects. These side effects include bone overgrowth, tumor formation and immune reaction. An alternative approach to reduce undesirable side effects of proteins in regenerative medicine is to use morphogenic peptides derived from the active domains of morphogenic proteins or soluble and insoluble components of the extracellular matrix of mineralized load bearing tissues to induce differentiation of progenitor cells, mineralization, maturation and bone formation. In that regard, many peptides with osteogenic activity have been discovered. These include peptides derived from bone morphogenic proteins (BMPs), those based on interaction with integrin and heparin-binding receptors, collagen derived peptides, peptides derived from other soluble ECM proteins such as bone sialoprotein and enamel matrix proteins, and those peptides derived from vasculoinductive and neuro-inductive proteins. Although these peptides show significant osteogenic activity in vitro and increase mineralization and bone formation in animal models, they are not widely used in clinical orthopedic applications as an alternative to morphogenic proteins. This is partly due to the limited availability of data on structure and function of morphogenic peptides in physiological medium, particularly in tissue engineered scaffolds. Due to their amphiphilic nature, peptides spontaneously self-assemble and aggregate into micellar structures in physiological medium. Aggregation alters the sequence of amino acids in morphogenic peptides that interact with cell surface receptors thus affecting osteogenic activity of the peptide. Aggregation and micelle formation can dramatically reduce the active concentration of morphogenic peptides with many-fold increase in peptide concentration in physiological medium. Other factors that affect bioactivity are the non-specific interaction of morphogenic peptides with lipid bilayer of the cell membrane, interaction of the peptide with cell surface receptors that do not specifically induce osteogenesis leading to less-than-optimal osteogenic activity of the peptide, and less-than-optimal interaction of the peptide with osteogenic receptors on the cell surface. Covalent attachment or physical interaction with the tissue engineered matrix can also alter the bioactivity of morphogenic peptides and lead to a lower extent of osteogenesis and bone formation. This chapter reviews advances in discovery of morphogenic peptide, their structural characterization, and challenges in using morphogenic peptides in clinical applications as growth factors in tissue engineered devices for regeneration of load bearing tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal A, Dulani R, Mahadevan A, Vagaha SJ, Vagha J, Shankar SK (2009) Primary ewing’s sarcoma of the frontal bone with intracranial extension. J Cancer Res Ther 5:208–209

    Article  PubMed  Google Scholar 

  • Ananda K, Nacharaju P, Smith PK, Acharya SA, Manjula BN (2008) Analysis of functionalization of methoxy-PEG as maleimide-PEG. Anal Biochem 374:231–242

    Article  CAS  PubMed  Google Scholar 

  • Aoyama K, Yamane A, Suga T, Suzuki E, Fukui T, Nakamura Y (2011) Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue. BMC Dev Biol 11:44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aplin AE, Howe A, Alahari SK, Juliani RL (1998) Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 50:197–263

    CAS  PubMed  Google Scholar 

  • Azuma H, Kido J, Ikedo D, Kataoka M, Nagata T (2004) Substance p enhances the inhibition of osteoblastic cell differentiation induced by lipopolysaccharide from porphyromonas gingivalis. J Periodontol 75:974–981

    Article  CAS  PubMed  Google Scholar 

  • Bergeron E, Leblanc E, Drevelle O, Giguere R, Beauvais S, Grenier G, Faucheux N (2012) The evaluation of ectopic bone formation induced by delivery systems for bone morphogenetic protein-9 or its derived peptide. Tissue Eng Part A 18:342–352

    Article  CAS  PubMed  Google Scholar 

  • Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med J 2:81–96

    Article  CAS  Google Scholar 

  • Brydone AS, Meek D, Maclaine S (2010) Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H J Eng Med 224:1329–1343

    Article  CAS  Google Scholar 

  • Burdick JA, Anseth KS (2002) Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315–4323

    Article  CAS  PubMed  Google Scholar 

  • Burkus JK, Dorchak JD, Sanders DL (2003) Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine 28:372–377

    PubMed  Google Scholar 

  • Cacchioli A, Ravanetti F, Bagno A, Dettin M, Gabbi C (2009) Human vitronectin-derived peptide covalently grafted onto titanium surface improves osteogenic activity: a pilot in vivo study on rabbits. Tissue Eng Part A 15:2917–2926

    Article  CAS  PubMed  Google Scholar 

  • Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11:471–491

    Article  PubMed  Google Scholar 

  • Cassar L, Li H, Pinto AR, Nicholls C, Bayne S, Liu JP (2008) Bone morphogenetic protein-7 inhibits telomerase activity, telomere maintenance, and cervical tumor growth. Cancer Res 68:9157–9166

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Lee JY, Park JH, Park JB, Suh JS, Choi YS, Lee SJ, Chung CP, Park YJ (2010) The identification of a heparin binding domain peptide from bone morphogenetic protein-4 and its role on osteogenesis. Biomaterials 31:7226–7238

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Lee JY, Chung CP, Park YJ (2013) Enhanced osteogenesis by collagen-binding peptide from bone sialoprotein in vitro and in vivo. J Biomed Mater Res A 101:547–554

    Article  PubMed  Google Scholar 

  • Chung EJ, Chien KB, Aguado BA, Shah RN (2013) Osteogenic potential of BMP-2-releasing self-assembled membranes. Tissue Eng A 19:2664–2673

    Article  CAS  Google Scholar 

  • Compeer MG, Suylen DPL, Hackeng TM, De Mey JGR (2012) Endothelin-1 and-2: two amino acids matter. Life Sci 91:607–612

    Article  CAS  PubMed  Google Scholar 

  • Cukierman E, Pankov R, Yamada KM (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14:633–639

    Article  CAS  PubMed  Google Scholar 

  • Di Silvestre M, Lolli F, Bakaloudis G (2014) Degenerative lumbar scoliosis in elderly patients: dynamic stabilization without fusion versus posterior instrumented fusion. Spine J 14:1–10

    Article  PubMed  Google Scholar 

  • Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Riguera R (2007) Conjugation of bioactive ligands to PEG-grafted chitosan at the distal end of PEG. Biomacromolecules 8:833–842

    Article  CAS  PubMed  Google Scholar 

  • Fishman JA, Greenwald MA, Grossi PA (2012) Transmission of infection with human allografts: essential considerations in donor screening. Clin Infect Dis 55:720–727

    Article  PubMed  Google Scholar 

  • Flierl MA, Smith WR, Mauffrey C, Irgit K, Williams AE, Ross E, Peacher G, Hak DJ, Stahel PF (2013) Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: a retrospective cohort study in 182 patients. J Orthop Surg Res 8:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Freitas VM, Vilas-Boas VF, Pimenta DC, Loureiro V, Juliano MA, Carvalho MR, Pinheiro JJV, Camargo ACM, Moriscot AS, Hoffman MP, Jaeger RG (2007) SIKVAV, a laminin alpha 1-derived peptide, interacts with integrins and increases protease activity of a human salivary gland adenoid cystic carcinoma cell line through the ERK1/2 signaling pathway. Am J Pathol 171:124–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frith JE, Mills RJ, Hudson JE, Cooper-White JJ (2012) Tailored integrin-extracellular matrix interactions to direct human mesenchymal stem cell differentiation. Stem Cells Dev 21:2442–2456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fromigue O, Brun J, Marty C, Da Nascimento S, Sonnet P, Marie PJ (2012) Peptide-based activation of alpha5 integrin for promoting osteogenesis. J Cell Biochem 113:3029–3038

    Article  CAS  PubMed  Google Scholar 

  • Ganss B, Kim RH, Sodek J (1999) Bone sialoprotein. Crit Rev Oral Biol Med 10:79–98

    Article  CAS  PubMed  Google Scholar 

  • Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Inj Int J Care Injured 36:20–27

    Article  Google Scholar 

  • Gloe T, Pohl U (2002) Laminin binding conveys mechanosensing in endothelial cells. News Physiol Sci 17:166–169

    CAS  PubMed  Google Scholar 

  • Goto T, Nakao K, Gunjigake KK, Kido MA, Kobayashi S, Tanaka T (2007) Substance p stimulates late-stage rat osteoblastic bone formation through neurokinin-1 receptors. Neuropeptides 41:25–31

    Article  CAS  PubMed  Google Scholar 

  • Goulet JA, Senunas LE, DeSilva GL, Greenfield MLVH (1997) Autogenous iliac crest bone graft- complications and functional assessment. Clin Orthop Relat Res 339:76–81

    Article  PubMed  Google Scholar 

  • Haaijman A, Karperien M, Lanske B, Hendriks J, Lowik CWGM, Bronckers ALJJ, Burger EH (1999) Inhibition of terminal chondrocyte differentiation by bone morphogenetic protein 7 (op-1) in vitro depends on the periarticular region but is independent of parathyroid hormone-related peptide. Bone 25:397–404

    Article  CAS  PubMed  Google Scholar 

  • He X, Ma J, Jabbari E (2008) Effect of grafting rgd and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells. Langmuir 24:12508–12516

    Article  CAS  PubMed  Google Scholar 

  • He X, Yang X, Jabbari E (2012) Combined effect of osteopontin and BMP-2 derived peptides grafted to an adhesive hydrogel on osteogenic and vasculogenic differentiation of marrow stromal cells. Langmuir 28:5387–5397

    Article  CAS  PubMed  Google Scholar 

  • Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415

    Article  CAS  PubMed  Google Scholar 

  • Jabbari E (2013) Osteogenic peptides in bone regeneration. Curr Pharm Des 19:3391–3402

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Kim JH, Park DS, Park KS, Kang SS, Lee JS, Jeong MH, Yoon TR (2012) Osteogenesis induced by a bone forming peptide from the prodomain region of BMP-7. Biomaterials 33:7057–7063

    Article  CAS  PubMed  Google Scholar 

  • Li QX, Kannan A, Wang W, DeMayo FJ, Taylor RN, Bagchi MK, Bagchi IC (2007) Bone morphogenetic protein 2 functions via a conserved signaling pathway involving wnt4 to regulate uterine decidualization in the mouse and the human. J Biol Chem 282:31725–31732

    Article  CAS  PubMed  Google Scholar 

  • Li JF, Lin ZY, Zheng QX, Guo XD, Yang SH, Lu HW, Lan SH (2010) Bone formation in ectopic and osteogenic tissue induced by a novel bmp-2-related peptide combined with rat tail collagen. Biotechnol Bioprocess Eng 15:725–732

    Article  CAS  Google Scholar 

  • Li JF, Hong JJ, Zheng QX, Guo XD, Lan SH, Cui FZ, Pan HT, Zou ZW, Chen C (2011) Repair of rat cranial bone defects with nhac/plla and bmp-2-related peptide or rhBMP-2. J Orthop Res 29:1745–1752

    Article  CAS  PubMed  Google Scholar 

  • Liu SQ, Tian QA, Wang L, Hedrick JL, Hui JHP, Yang YY, Ee PLR (2010) Injectable biodegradable poly(ethylene glycol)/RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stem cells. Macromol Rapid Commun 31:1148–1154

    Article  CAS  PubMed  Google Scholar 

  • Lutolf MP, Tirelli N, Cerritelli S, Cavalli L, Hubbell JA (2001) Systematic modulation of michael-type reactivity of thiols through the use of charged amino acids. Bioconjug Chem 12:1051–1056

    Article  CAS  PubMed  Google Scholar 

  • Madl CM, Mehta M, Duda GN, Heilshorn SC, Mooney DJ (2014) Presentation of BMP-2 mimicking peptides in 3D hydrogels directs cell fate commitment in osteoblasts and mesenchymal stem cells. Biomacromolecules 15:445–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maeda T, Titani K, Sekiguchi K (1994) Cell-adhesive activity and receptor-binding specificity of the laminin-derived YIGSR sequence grafted onto staphylococcal protein-A. J Biochem 115:182–189

    CAS  PubMed  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The martini force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  CAS  PubMed  Google Scholar 

  • McKay B, Sandhu HS (2002) Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine 27:S66–S85

    Article  PubMed  Google Scholar 

  • Mckay WF, Peckham SM, Badura JM (2007) A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (infuse bone graft). Int Orthop 31:729–734

    Article  PubMed Central  PubMed  Google Scholar 

  • Meens MJPMT, Compeer MG, Hackeng TM, van Zandvoort MA, Janssen BJA, De Mey JGR (2010) Stimuli of sensory-motor nerves terminate arterial contractile effects of endothelin-1 by cgrp and dissociation of et-1/eta-receptor complexes. PLoS One 5:e10917

    Article  PubMed Central  PubMed  Google Scholar 

  • Meinel AJ, Kubow KE, Klotzsch E, Garcia-Fuentes M, Smith ML, Vogel V, Merkle HP, Meinel L (2009) Optimization strategies for electrospun silk fibroin tissue engineering scaffolds. Biomaterials 30:3058–3067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mercado AE, Jabbari E (2010) Effect of encapsulation or grafting on release kinetics of recombinant human bone morphogenetic protein-2 from self-assembled poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. Microsc Res Tech 73:824–833

    Article  CAS  PubMed  Google Scholar 

  • Mercado AE, Ma J, He X, Jabbari E (2009) Release characteristics and osteogenic activity of recombinant human bone morphogenetic protein-2 grafted to novel self-assembled poly(lactide-co-glycolide fumarate) nanoparticles. J Control Release 140:148–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moeinzadeh S, Barati D, Sarvestani SK, Karimi T, Jabbari E (2014) Experimental and computational investigation of the effect of hydrophobicity on aggregation and osteoinductive potential of BMP-2 derived peptide in a hydrogel matrix. Tissue Eng Part A 21:134–146

    Article  PubMed  Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The martini coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  Google Scholar 

  • Mould AP, Burrows L, Humphries MJ (1998) Identification of amino acid residues that form part of the ligand-binding pocket of integrin alpha 5 beta 1. J Biol Chem 273:25664–25672

    Article  CAS  PubMed  Google Scholar 

  • Mygind T, Stiehler M, Baatrup A, Li H, Zoua X, Flyvbjerg A, Kassem M, Bunger C (2007) Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials 28:1036–1047

    Article  CAS  PubMed  Google Scholar 

  • Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14:149–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nolan-Stevaux O, Zhong WD, Culp S, Shaffer K, Hoover J, Wickramasinghe D, Ruefli-Brasse A (2012) Endoglin requirement for BMP-9 signaling in endothelial cells reveals new mechanism of action for selective anti-endoglin antibodies. PLoS One 7:e50920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ossipov DA, Hilborn J (2006) Poly(vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules 39:1709–1718

    Article  CAS  Google Scholar 

  • Owen SC, Chan DPY, Shoichet MS (2012) Polymeric micelle stability. Nano Today 7:53–65

    Article  CAS  Google Scholar 

  • Paine ML, Snead ML (1997) Protein interactions during assembly of the enamel organic extracellular matrix. J Bone Miner Res 12:221–227

    Article  CAS  PubMed  Google Scholar 

  • Park JES, Shao DM, Upton PD, deSouza P, Adcock IM, Davies RJ, Morrell NW, Griffiths MJD, Wort SJ (2012) BMP-9 induced endothelial cell tubule formation and inhibition of migration involves smad1 driven endothelin-1 production. PLoS One 7:e30075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poh CK, Shi ZL, Tan XW, Liang ZC, Foo XM, Tan HC, Neoh KG, Wang W (2011) Cobalt chromium alloy with immobilized BMP peptide for enhanced bone growth. J Orthop Res 29:1424–1430

    Article  CAS  PubMed  Google Scholar 

  • Raida M, Clement JH, Leek RD, Ameri K, Bicknell R, Niederwieser D, Harris AL (2005) Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. J Cancer Res Clin Oncol 131:741–750

    Article  CAS  PubMed  Google Scholar 

  • Reddi AH (2005) BMPs: from bone morphogenetic proteins to body morphogenetic proteins. Cytokine Growth Factor Rev 16:249–250

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    Article  CAS  PubMed  Google Scholar 

  • Ruppert R, Hoffmann E, Sebald W (1996) Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur J Biochem 237:295–302

    Article  CAS  PubMed  Google Scholar 

  • Saito A, Suzuki Y, Ogata S, Ohtsuki C, Tanihara M (2003) Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim Biophys Acta Protein Proteome 1651:60–67

    Article  CAS  Google Scholar 

  • Saito A, Suzuki Y, Ogata S, Ohtsuki C, Tanihara M (2004) Prolonged ectopic calcification induced by bmp-2-derived synthetic peptide. J Biomed Mater Res A 70:115–121

    Article  PubMed  Google Scholar 

  • Saito A, Suzuki Y, Ogata S, Ohtsuki C, Tanihara M (2005) Accelerated bone repair with the use of a synthetic bmp-2-derived peptide and bone-marrow stromal cells. J Biomed Mater Res A 72A:77–82

    Article  CAS  Google Scholar 

  • Senta H, Bergeron E, Drevelle O, Park H, Faucheux N (2011) Combination of synthetic peptides derived from bone morphogenetic proteins and biomaterials for medical applications. Can J Chem Eng 89:227–239

    Article  CAS  Google Scholar 

  • Shields LBE, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB (2006) Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 31:542–547

    Article  PubMed  Google Scholar 

  • Shin H, Jo S, Mikos AG (2002) Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with ARG-GLY-ASP peptides and a poly(ethylene glycol) spacer. J Biomed Mater Res 61:169–179

    Article  CAS  PubMed  Google Scholar 

  • Swiontkowski MF, Aro HT, Donell S, Esterhai JL, Goulet J, Jones A, Kregor PJ, Nordsletten L, Paiement G, Patel A (2006) Recombinant human bone morphogenetic protein-2 in open tibial fractures – a subgroup analysis of data combined from two prospective randomized studies. J Bone Joint Surg Am 88A:1258–1265

    Article  Google Scholar 

  • Visser R, Arrabal PM, Santos-Ruiz L, Fernandez-Barranco R, Becerra J, Cifuentes M (2014) A collagen-targeted biomimetic RGD peptide to promote osteogenesis. Tissue Eng A 20:34–44

    Article  CAS  Google Scholar 

  • von Schroeder HP, Veillette CJ, Payandeh J, Qureshi A, Heersche JNM (2003) Endothelin-1 promotes osteoprogenitor proliferation and differentiation in fetal rat calvarial cell cultures. Bone 33:673–684

    Article  Google Scholar 

  • Wang LP, Zhao R, Shi XY, Wei TP, Halloran BP, Clark DJ, Jacobs CR, Kingery WS (2009) Substance p stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro. Bone 45:309–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warotayanont R, Zhu DH, Snead ML, Zhou Y (2008) Leucine-rich amelogenin peptide induces osteogenesis in mouse embryonic stem cells. Biochem Biophys Res Commun 367:1–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warotayanont R, Frenkel B, Snead ML, Zhou Y (2009) Leucine-rich amelogenin peptide induces osteogenesis by activation of the wnt pathway. Biochem Biophys Res Commun 387:558–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wen X, Cawthorn WP, MacDougald OA, Stupp SI, Snead ML, Zhou Y (2011) The influence of leucine-rich amelogenin peptide on msc fate by inducing wnt10b expression. Biomaterials 32:6478–6486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wetzel P, Haag J, Campean V, Goldschmeding R, Atalla A, Amann K, Aigner T (2006) Bone morphogenetic protein-7 expression and activity in the human adult normal kidney is predominently localized to the distal nephron. Kidney Int 70:717–723

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DL, Enneking WF (2005) Allograft bone decreases in strength in vivo over time. Clin Orthop Relat Res 435:36–42

    Article  PubMed  Google Scholar 

  • Wiley DM, Jin SW (2011) Bone morphogenetic protein functions as a context-dependent angiogenic cue in vertebrates. Semin Cell Dev Biol 22:1012–1018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu XP, Sagave J, Rutkovskiy A, Haugen F, Baysa A, Stale N, Czibik G, Dahl CP, Gullestad L, Vaage J, Valen G (2014) Expression of bone morphogenetic protein 4 and its receptors in the remodeling heart. Life Sci 97:145–154

    Article  CAS  PubMed  Google Scholar 

  • Xiao GZ, Wang D, Benson MD, Karsenty G, Franceschi RT (1998) Role of the alpha(2)-integrin in osteoblast-specific gene expression and activation of the osf2 transcription factor. J Biol Chem 273:32988–32994

    Article  CAS  PubMed  Google Scholar 

  • Yang SC, Faller R (2012) Pressure and surface tension control self-assembled structures in mixtures of pegylated and non-pegylated lipids. Langmuir 28:2275–2280

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J (2005) The effect of incorporating rgd adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26:5991–5998

    Article  CAS  PubMed  Google Scholar 

  • Yang HS, La WG, Bhang SH, Jeon JY, Lee JH, Kim BS (2010) Heparin-conjugated fibrin as an injectable system for sustained delivery of bone morphogenetic protein-2. Tissue Eng Part A 16:1225–1233

    Article  CAS  PubMed  Google Scholar 

  • Yin W-N, Cao F-Y, Han K, Zeng X, Zhui R-X, Zhang X-Z (2014) Synergistic effect of BMP-7 derived peptide and cyclic rgd in regulating differentiation behaviours of mesenchymal stem cells. J Mater Chem B 2:8434–8440

    Article  CAS  Google Scholar 

  • Zana R (1996) Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 12:1208–1211

    Article  CAS  Google Scholar 

  • Zhu JM (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants to E. Jabbari from the National Science Foundation under grant Nos. DMR1049381, IIP-1357109, and CBET1403545, the National Institutes of Health under grant No. AR063745, and the Arbeitsgemeinschaft Fur Osteosynthesefragen (AO) Foundation under grant No. C10-44J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaiel Jabbari Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moeinzadeh, S., Jabbari, E. (2015). Morphogenic Peptides in Regeneration of Load Bearing Tissues. In: Bertassoni, L., Coelho, P. (eds) Engineering Mineralized and Load Bearing Tissues. Advances in Experimental Medicine and Biology, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-22345-2_6

Download citation

Publish with us

Policies and ethics