Skip to main content

Anterior Cruciate Ligament: Structure, Injuries and Regenerative Treatments

  • Chapter
Engineering Mineralized and Load Bearing Tissues

Abstract

Anterior cruciate ligament (ACL) is one of the most vulnerable ligaments of the knee. ACL impairment results in episodic instability, chondral and meniscal injury and early osteoarthritis. The poor self-healing capacity of ACL makes surgical treatment inevitable. Current ACL reconstructions include a substitution of torn ACL via biological grafts such as autograft, allograft. This review provides an insight of ACL structure, orientation and properties followed by comparing the performance of various constructs that have been used for ACL replacement. New approaches, undertaken to induce ACL regeneration and fabricate biomimetic scaffolds, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

45S5 BG:

45S5 bioglass®

ACL:

Anterior cruciate ligament

ACLR:

Anterior cruciate ligament reconstruction

ACP:

Amorphous calcium phosphate

BFGF:

Basic fibroblast growth factor

BMP:

Bone morphogenetic protein

BPTB:

Bone-patellar tendon-bone

EGF:

Epidermal growth factor

GAG:

Glycosaminoglycan

HA:

Hyaluronan

HAp:

Hydroxyapatite

HT:

Hamstring tendon

HYAFF-11®:

Benzylic ester of hyaluronic acid

IGF:

Insulin-like growth factor

OA:

Osteoarthritis

PAAm:

Polyacrylamide

PCL:

Poly(ε-caprolactone)

PCLDLLA:

Poly(ε-caprolactone-co-D,L-lactide)

PDGF:

Platelet-derived growth factor

PDLLA:

Poly(D,L-lactide acid)

PDMS:

Poly(dimethyl siloxane)

PDTDDD:

Poly (desaminotyrosyl-tyrosine dodecyl dodecanedioate)

PDTEC:

Poly (desaminotyrosyl-tyrosine ethyl ester carbonate)

PE:

Polyester

PEEK:

Poly(ether ether ketone)

PEGDA:

Poly(ethylene glycol)-diacrylate

PEU:

Poly(ester-urethane)

PEUUR:

Poly(ester urethane-urea)

PG:

Phosphate glass

PGA:

Poly(glycolic acid)

PLA:

Poly(lactic acid)

PLCL:

Poly(L-lactide-co-ε-caprolactone)

PLDLA:

Poly(L-lactide -Co-D,L-lactide acid)

PLGA:

Poly(L,D-lactide-co-glycolide acid)

PLLA:

Poly(L-lactide acid)

PLLA-AC:

Poly(L-lactide-co-acryloyl carbonate)

PMGI:

Poly(methyl glutarimide)

PU:

Polyurethane

PUUR:

Poly(urethane urea)

RADA:

Self-assembled peptide

RGD:

Arg-Gly-Asp

STG:

Semitendinosus and gracilis

TGF:

Transferring growth factor-β.

β-TCP:

β tricalcium phosphate

References

  • Abdullah AH et al (2012) Effects of screw materials in anterior cruciate ligament reconstruction using finite element analysis. Procedia Eng 41:1614–1619

    CAS  Google Scholar 

  • Adam F et al (2004) Biomechanical properties of patellar and hamstring graft tibial fixation techniques in anterior cruciate ligament reconstruction. Am J Sports Med 32(1):71–78

    PubMed  Google Scholar 

  • Ahn JH et al (2012) Long-term results of anterior cruciate ligament reconstruction using bone–patellar tendon–bone: an analysis of the factors affecting the development of osteoarthritis. Arthroscopy 28(8):1114–1123

    PubMed  Google Scholar 

  • Altman GH et al (2002a) Cell differentiation by mechanical stress. FASEB J 16(2):270–272

    Google Scholar 

  • Altman GH et al (2002b) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23(20):4131–4141

    CAS  PubMed  Google Scholar 

  • Altman GH et al (2002c) Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng 124(6):742–749

    PubMed  Google Scholar 

  • Altman GH et al (2008) The use of long-term bioresorbable scaffolds for anterior cruciate ligament repair. J Am Acad Orthop Surg 16(4):177–187

    PubMed  Google Scholar 

  • Amendola A, Stolley MP (2009) What do we really know about allografts? Clin Sports Med 28(2):215–222

    PubMed  Google Scholar 

  • Amis A, Dawkins G (1991) Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg Br 73-B(2):260–267

    Google Scholar 

  • Angelidis IK et al (2010) Tissue engineering of flexor tendons: the effect of a tissue bioreactor on adipoderived stem cellseeded and fibroblast-seeded tendon constructs. J Hand Surg 35(9):1466–1472

    Google Scholar 

  • Arnsdorf EJ et al (2009) The periosteum as a cellular source for functional tissue engineering. Tissue Eng Part A 15(9):2637–2642

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arthur A, Zannettino A, Gronthos S (2009) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 218(2):237–245

    CAS  PubMed  Google Scholar 

  • Ashammakhi N et al (2012) Nanofiber-based scaffolds for tissue engineering. Eur J Plast Surg 35(2):135–149

    Google Scholar 

  • Asik M et al (2007) The mid- to long-term results of the anterior cruciate ligament reconstruction with hamstring tendons using Transfix technique. Knee Surg Sports Traumatol Arthrosc 15(8):965–972

    PubMed  Google Scholar 

  • Bach JS et al (2012) Design considerations for a prosthetic anterior cruciate ligament. J Med Devices 6(4):045004–045009

    Google Scholar 

  • Barber JG et al (2013) Braided nanofibrous scaffold for tendon and ligament tissue engineering. Tissue Eng A 19(11–12):1265–1274

    Google Scholar 

  • Bartlett RJ, Clatworthy MG, Nguyen TNV (2001) Graft selection in reconstruction of the anterior cruciate ligament. J Bone Joint Surg B 83(5):625–634

    CAS  Google Scholar 

  • Beasley LS et al (2005) Anterior cruciate ligament reconstruction: a literature review of the anatomy, biomechanics, surgical considerations, and clinical outcomes. Oper Tech Orthop 15(1):5–19

    Google Scholar 

  • Bellincampi LD et al (1998) Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res 16(4):414–420

    CAS  PubMed  Google Scholar 

  • Benhardt HA, Cosgriff-Hernandez EM (2009) The role of mechanical loading in ligament tissue engineering. Tissue Eng B: Rev 15(4):467–475

    CAS  Google Scholar 

  • Bogunovic L, Yang JS, Wright RW (2013) Anterior cruciate ligament reconstruction: contemporary revision options. Oper Tech Sports Med 21(1):64–71

    Google Scholar 

  • Bose ElectroForce BioDynamic Instrument. Available from: http://worldwide.bose.com/electroforce/en_us/web/home/page.html

  • Bourke SL, Kohn J, Dunn MG (2004) Preliminary development of a novel resorbable synthetic polymer fiber scaffold for anterior cruciate ligament reconstruction. Tissue Eng 10(1–2):43–52

    CAS  PubMed  Google Scholar 

  • Bourke HE et al (2013) Randomized controlled trial of osteoconductive fixation screws for anterior cruciate ligament reconstruction: a comparison of the calaxo and milagro screws. Arthroscopy 29(1):74–82

    PubMed  Google Scholar 

  • Brand J et al (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28(5):761–774

    PubMed  Google Scholar 

  • Brandsson S et al (2001) A prospective four- to seven-year follow-up after arthroscopic anterior cruciate ligament reconstruction. Scand J Med Sci Sports 11(1):23–27

    CAS  PubMed  Google Scholar 

  • Bray RC, Leonard CA, Salo PT (2002) Vascular physiology and long-term healing of partial ligament tears. J Orthop Res 20(5):984–989

    PubMed  Google Scholar 

  • Brune T et al (2007) In vitro comparison of human fibroblasts from intact and ruptured ACL for use in tissue engineering. Eur Cells Mater 14:78–90

    CAS  Google Scholar 

  • Butler DL et al (2009a) Using functional tissue engineering and bioreactors to mechanically stimulate tissue-engineered constructs. Tissue Eng A 15(4):741–749

    CAS  Google Scholar 

  • Butler DL et al (2009b) The impact of biomechanics in tissue engineering and regenerative medicine. Tissue Eng B: Rev 15(4):477–484

    Google Scholar 

  • Caborn DNM, Selby JB (2002) Allograft anterior tibialis tendon with bioabsorbable interference screw fixation in anterior cruciate ligament reconstruction. Arthroscopy 18(1):102–105

    PubMed  Google Scholar 

  • Canseco JA et al (2012) Effect on ligament marker expression by direct-contact co-culture of mesenchymal stem cells and anterior cruciate ligament cells. Tissue Eng A 18(23–24):2549–2558

    CAS  Google Scholar 

  • Cardwell RD, Dahlgren LA, Goldstein, AS (2014) Electrospun fibre diameter, not alignment, affects mesenchymal stem cell differentiation into the tendon/ligament lineage. J Tissue Eng Regen Med 8(12): 937–945

    Google Scholar 

  • Carpenter JE, Hankenson KD (2004) Animal models of tendon and ligament injuries for tissue engineering applications. Biomaterials 25(9):1715–1722

    CAS  PubMed  Google Scholar 

  • Caruso AB, Dunn MG (2004) Functional evaluation of collagen fiber scaffolds for ACL reconstruction: cyclic loading in proteolytic enzyme solutions. J Biomed Mater Res A 69(1):164–171

    PubMed  Google Scholar 

  • Caruso AB, Dunn MG (2005) Changes in mechanical properties and cellularity during long-term culture of collagen fiber ACL reconstruction scaffolds. J Biomed Mater Res A 73A(4):388–397

    CAS  Google Scholar 

  • Cavallaro JF, Kemp PD, Kraus KH (1994) Collagen fabrics as biomaterials. Biotechnol Bioeng 43(8):781–791

    CAS  PubMed  Google Scholar 

  • Chan B et al (2000) Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthop Scand 71(5):513–518

    CAS  PubMed  Google Scholar 

  • Chapekar MS (2000) Tissue engineering: challenges and opportunities. J Biomed Mater Res 53(6):617–620

    CAS  PubMed  Google Scholar 

  • Charles WP et al (1998) Frontiers in tissue engineering. Pergamon, Oxford

    Google Scholar 

  • Chen J et al (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 67A(2):559–570

    CAS  Google Scholar 

  • Chen J et al (2006) Monitoring mesenchymal stromal cell developmental stage to apply on-time mechanical stimulation for ligament tissue engineering. Tissue Eng 12(11):3085–3095

    CAS  PubMed  Google Scholar 

  • Chen X et al (2008a) Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomaterials 29(27):3683–3692

    CAS  PubMed  Google Scholar 

  • Chen Y-J et al (2008b) Effects of cyclic mechanical stretching on the mRNA expression of tendon/ligament-related and osteoblast-specific genes in human mesenchymal stem cells. Connect Tissue Res 49(1):7–14

    CAS  PubMed  Google Scholar 

  • Chen K et al (2012) A hybrid silk/RADA-based fibrous scaffold with triple hierarchy for ligament regeneration. Tissue Eng Part A 18(13–14):1399–1409

    CAS  PubMed  Google Scholar 

  • Chen F, Hayami JWS, Amsden BG (2014) Electrospun poly(l-lactide-co-acryloyl carbonate) fiber scaffolds with a mechanically stable crimp structure for ligament tissue engineering. Biomacromolecules 15(5):1593–1601

    CAS  PubMed  Google Scholar 

  • Cheng MT et al (2010) Comparison of potentials between stem cells isolated from human anterior cruciate ligament and bone marrow for ligament tissue engineering. Tissue Eng A 16(7):2237–2253

    CAS  Google Scholar 

  • Christel P (1994) Prosthetic replacement of the anterior cruciate ligament: a challenge. Clin Mater 15(1):3–13

    CAS  PubMed  Google Scholar 

  • Chvapil M et al (1993) Collagen fibers as a temporary scaffold for replacement of ACL in goats. J Biomed Mater Res 27(3):313–325

    CAS  PubMed  Google Scholar 

  • Cooper JA et al (2005) Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26(13):1523–1532

    CAS  PubMed  Google Scholar 

  • Cooper JJA et al (2006) Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials 27(13):2747–2754

    CAS  PubMed  Google Scholar 

  • Cooper JA et al (2007) Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci 104(9):3049–3054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cox CL et al (2010) CALAXO® osteoconductive interference screw: the value of post-market surveillance. J Surg Orthop Adv 19(2):121–124

    PubMed Central  PubMed  Google Scholar 

  • Crawford C et al (2005) Investigation of postoperative allograft-associated infections in patients who underwent musculoskeletal allograft implantation. Clin Infect Dis 41(2):195–200

    PubMed  Google Scholar 

  • Cristino S et al (2005) Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11®-based prototype ligament scaffold. J Biomed Mater Res A 73A(3):275–283

    CAS  Google Scholar 

  • Doroski DM, Brink KS, Temenoff JS (2007) Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials 28(2):187–202

    CAS  PubMed  Google Scholar 

  • Drogset JO et al (2010) Autologous patellar tendon and quadrupled hamstring grafts in anterior cruciate ligament reconstruction: a prospective randomized multicenter review of different fixation methods. Knee Surg Sports Traumatol Arthrosc 18(8):1085–1093

    PubMed  Google Scholar 

  • Dunn MG (2006) Tissue engineering strategies for regeneration of the anterior cruciate ligament In: Walsh WR (ed) Repair and regeneration of ligaments, tendons, and joint capsule. Humana Press, New York, pp 279–296

    Google Scholar 

  • Dunn MG et al (1992) Anterior cruciate ligament reconstruction using a composite collagenous prosthesis. A biomechanical and histologic study in rabbits. Am J Sports Med 20(5):507–515

    CAS  PubMed  Google Scholar 

  • Dunn MG et al (1995) Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res 29(11):1363–1371

    CAS  PubMed  Google Scholar 

  • Dunn MG et al (1997) Preliminary development of a collagen-PLA composite for ACL reconstruction. J Appl Polym Sci 63(11):1423–1428

    CAS  Google Scholar 

  • Dürselen L et al (2006) Biological response to a new composite polymer augmentation device used for cruciate ligament reconstruction. J Biomed Mater Res B Appl Biomater 76B(2):265–272

    Google Scholar 

  • Ekwueme EC et al (2011) Recent advancements in ligament replacement. Recent Pat Biomed Eng 4(3):196–204

    Google Scholar 

  • Enea D et al (2011) Extruded collagen fibres for tissue engineering applications: effect of crosslinking method on mechanical and biological properties. J Mater Sci Mater Med 22(6):1569–1578

    CAS  PubMed  Google Scholar 

  • Enea D et al (2013) Collagen fibre implant for tendon and ligament biological augmentation. In vivo study in an ovine model. Knee Surg Sports Traumatol Arthrosc 21(8): 1783-1793

    Google Scholar 

  • Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    CAS  PubMed  Google Scholar 

  • Erisken C, Kalyon DM, Wang H (2008) Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29(30):4065–4073

    CAS  PubMed  Google Scholar 

  • Erisken C, Kalyon DM, Wang H (2010) Viscoelastic and biomechanical properties of osteochondral tissue constructs generated from graded polycaprolactone and beta-tricalcium phosphate composites. J Biomech Eng 132(9):091013

    PubMed  Google Scholar 

  • Fahey M, Indelicato PA, Frank CB (1994) Bone tunnel enlargement after anterior cruciate ligament replacement. Am J Sports Med 22(3):410–414

    CAS  PubMed  Google Scholar 

  • Fan H et al (2008a) In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials 29(23):3324–3337

    CAS  PubMed  Google Scholar 

  • Fan H et al (2008b) Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold. Biomaterials 29(8):1017–1027

    CAS  PubMed  Google Scholar 

  • Fan H et al (2008c) Development of a silk cable-reinforced gelatin/silk fibroin hybrid scaffold for ligament tissue engineering. Cell Transplant 17(12):1389–1401

    PubMed  Google Scholar 

  • Fan H et al (2009) Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials 30(28):4967–4977

    CAS  PubMed  Google Scholar 

  • Feng XX et al (2007) Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO 2. Int J Biol Macromol 40(2):105–111

    CAS  PubMed  Google Scholar 

  • Ferreira LS et al (2007) Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 28(17):2706–2717

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fleming BC et al (2009) Collagen-platelet composites improve the biomechanical properties of healing anterior cruciate ligament grafts in a porcine model. Am J Sports Med 37(8):1554–1563

    PubMed Central  PubMed  Google Scholar 

  • Forster MC, Forster IW (2005) Patellar tendon or four-strand hamstring? A systematic review of autografts for anterior cruciate ligament reconstruction. Knee 12(3):225–230

    PubMed  Google Scholar 

  • Freed LE et al (2006) Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng 12(12):3285–3305

    CAS  PubMed  Google Scholar 

  • Freeman JW (2009a) Tissue engineering options for ligament healing. Bone Tissue Regen Insights 2:13–23

    CAS  Google Scholar 

  • Freeman JW (2009b) Tissue engineered devices for ligament repair, replacement and regeneration. Afr J Biotechnol 8(25):7182–7189

    CAS  Google Scholar 

  • Freeman JW, Woods MD, Laurencin CT (2007) Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design. J Biomech 40(9):2029–2036

    PubMed Central  PubMed  Google Scholar 

  • Freeman JW et al (2009) Tissue engineering of the anterior cruciate ligament: the viscoelastic behavior and cell viability of a novel braid–twist scaffold. J Biomater Sci Polym Ed 20(12):1709–1728

    CAS  PubMed  Google Scholar 

  • Freeman JW et al (2011) Evaluation of a hydrogel-fiber composite for ACL tissue engineering. J Biomech 44(4):694–699

    PubMed  Google Scholar 

  • Full SM et al (2015) Effect of fiber orientation of collagen-based electrospun meshes on human fibroblasts for ligament tissue engineering applications. J Biomed Mater Res B Appl Biomater 103(1):39–46

    Google Scholar 

  • Funakoshi T et al (2005) Novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering. J Biomed Mater Res A 74A(3):338–346

    CAS  Google Scholar 

  • Garcia-Fuentes M et al (2009) Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Biomaterials 30(28):5068–5076

    CAS  PubMed  Google Scholar 

  • Ge Z, Goh JCH, Lee EH (2005a) Selection of cell source for ligament tissue engineering. Cell Transplant 14(8):573–583

    PubMed  Google Scholar 

  • Ge Z, Goh JCH, Lee EH (2005b) The effects of bone marrow-derived mesenchymal stem cells and fascia wrap application to anterior cruciate ligament tissue engineering. Cell Transplant 14(10):763–773

    PubMed  Google Scholar 

  • Ge Z et al (2005c) Characterization of knitted polymeric scaffolds for potential use in ligament tissue engineering. J Biomater Sci Polym Ed 16(9):1179–1192

    CAS  PubMed  Google Scholar 

  • Gentleman E et al (2003) Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials 24(21):3805–3813

    CAS  PubMed  Google Scholar 

  • Gentleman E et al (2004) Tissue engineering of ligament. In: Wnek GE, Bowlin GL (eds) Encyclopedia of biomaterials and biomedical engineering. Marcel Dekker, New York, pp 1559–1569

    Google Scholar 

  • Gentleman E et al (2006) Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro. Ann Biomed Eng 34(5):726–736

    PubMed  Google Scholar 

  • George MS, Dunn WR, Spindler KP (2006) Current concepts review: revision anterior cruciate ligament reconstruction. Am J Sports Med 34(12):2026–2037

    PubMed  Google Scholar 

  • Gerhard P et al (2013) Long-term results of arthroscopically assisted anatomical single-bundle anterior cruciate ligament reconstruction using patellar tendon autograft: are there any predictors for the development of osteoarthritis? Knee Surg Sports Traumatol Arthrosc 21(4):957–964

    PubMed  Google Scholar 

  • Gigante A et al (2009) Collagen I membranes for tendon repair: effect of collagen fiber orientation on cell behavior. J Orthop Res 27(6):826–832

    CAS  PubMed  Google Scholar 

  • Gisselfält K, Edberg B, Flodin P (2002) Synthesis and properties of degradable poly(urethane urea)s to be used for ligament reconstructions. Biomacromolecules 3(5):951–958

    PubMed  Google Scholar 

  • Goh JCH et al (2003) Tissue-engineering approach to the repair and regeneration of tendons and ligaments. Tissue Eng 9(SUPPL 1):S31–S44

    CAS  PubMed  Google Scholar 

  • Goh YF, Shakir I, Hussain R (2013) Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J Mater Sci 48(8):3027–3054

    CAS  Google Scholar 

  • Goldblatt JP et al (2005) Reconstruction of the anterior cruciate ligament: meta-analysis of patellar tendon versus hamstring tendon autograft. Arthroscopy 21(7):791–803

    PubMed  Google Scholar 

  • Haddad-Weber M et al (2010) BMP12 and BMP13 gene transfer induce ligamentogenic differentiation in mesenchymal progenitor and anterior cruciate ligament cells. Cytotherapy 12(4):505–513

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hagerty P et al (2012) The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments. Biomaterials 33(27):6355–6361

    CAS  PubMed  Google Scholar 

  • Hagiwara Y et al (2010) Ligament-like tough double-network hydrogel based on bacterial cellulose. Cellulose 17(1):93–101

    CAS  Google Scholar 

  • Hannafin JA et al (2006) Effect of cyclic strain and plating matrix on cell proliferation and integrin expression by ligament fibroblasts. J Orthop Res 24(2):149–158

    CAS  PubMed  Google Scholar 

  • Hapa O, Barber FA (2009) ACL fixation devices. Sports Med Arthrosc Rev 17(4):217–223

    Google Scholar 

  • Hardy JG, Scheibel TR (2010) Composite materials based on silk proteins. Prog Polym Sci 35(9):1093–1115

    CAS  Google Scholar 

  • Hardy JG, Römer LM, Scheibel TR (2008) Polymeric materials based on silk proteins. Polymer 49(20):4309–4327

    CAS  Google Scholar 

  • Harvey A, Thomas NP, Amis AA (2005) Fixation of the graft in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br Vol 87-B(5):593–603

    Google Scholar 

  • Haut Donahue TL et al (2002) A biomechanical evaluation of anterior and posterior tibialis tendons as suitable single-loop anterior cruciate ligament grafts. Arthroscopy 18(6):589–597

    PubMed  Google Scholar 

  • Hayami JWS et al (2010) Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. J Biomed Mater Res A 92A(4):1407–1420

    CAS  Google Scholar 

  • He P et al (2012) In vitro ligament–bone interface regeneration using a trilineage coculture system on a hybrid silk scaffold. Biomacromolecules 13(9):2692–2703

    CAS  PubMed  Google Scholar 

  • He P et al (2013) Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. J Biomed Mater Res A 101A(2):555–566

    CAS  Google Scholar 

  • Heckmann L et al (2007) Human mesenchymal progenitor cell responses to a novel textured poly(L-lactide) scaffold for ligament tissue engineering. J Biomed Mater Res B Appl Biomater 81B(1):82–90

    CAS  Google Scholar 

  • Hee CK et al (2012) Regenerative tendon and ligament healing: opportunities with recombinant human platelet-derived growth factor BB-homodimer. Tissue Eng B 18(3):225–234

    CAS  Google Scholar 

  • Henshaw DR et al (2006) Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels. J Orthop Res 24(3):481–490

    CAS  PubMed  Google Scholar 

  • Hey Groves E (1917) Operation for the repair of the crucial ligaments. Lancet 190(4914):674–676

    Google Scholar 

  • Horan RL et al (2006) Yarn design for functional tissue engineering. J Biomech 39(12):2232–2240

    PubMed  Google Scholar 

  • Horan RL et al (2009a) Design and characterization of a scaffold for anterior cruciate ligament engineering. J Knee Surg 22(1):82–92

    PubMed  Google Scholar 

  • Horan RL, SUPP II et al (2009b) Clinical, mechanical and histopathological evaluation of a bioengineered long-term bioresorbable silk fibroin graft in a one year goat study for development of a functional autologous ACL. J Bone Joint Surg Br Vol 91-B(SUPP II):288

    Google Scholar 

  • Hsu HC, Huang TL, Wu JJ (2007) Primary anterior cruciate ligament reconstruction by Dacron prosthesis augmented with iliotibial band or fascia lata: a 14-year subjective outcome study. Mid-Taiwan J Med 12(4):191–197

    Google Scholar 

  • Irie T et al (2011) Biomechanical and histologic evaluation of tissue engineered ligaments using chitosan and hyaluronan hybrid polymer fibers: a rabbit medial collateral ligament reconstruction model. J Biomed Mater Res A 97A(2):111–117

    CAS  Google Scholar 

  • Jackson DW et al (1987a) Cruciate reconstruction using freeze dried anterior cruciate ligament allograft and a ligament augmentation device (LAD). Am J Sports Med 15(6):528–538

    CAS  PubMed  Google Scholar 

  • Jackson DW et al (1987b) Freeze dried anterior cruciate ligament allografts. Am J Sports Med 15(4):295–303

    PubMed  Google Scholar 

  • Jackson DW et al (1993) A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 21(2):176–185

    CAS  PubMed  Google Scholar 

  • Jason MM, Adam HH, Sung KLP (2004) Epidermal growth factor differentially affects integrin-mediated adhesion and proliferation of ACL and MCL fibroblasts. Biorheology 41(2):139–152

    Google Scholar 

  • Jiang P et al (2006) Tensile behavior and morphology of differently degummed silkworm (Bombyx mori) cocoon silk fibres. Mater Lett 60(7):919–925

    CAS  Google Scholar 

  • Jianqi H et al (2002) Comparison of calcium alginate film with collagen membrane for guided bone regeneration in mandibular defects in rabbits. J Oral Maxillofac Surg 60(12):1449–1454

    PubMed  Google Scholar 

  • Jockenhoevel S et al (2001) Fibrin gel – advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg 19(4):424–430

    CAS  PubMed  Google Scholar 

  • Joshi SM et al (2009) Collagen-platelet composite enhances biomechanical and histologic healing of the porcine anterior cruciate ligament. Am J Sports Med 37(12):2401–2410

    PubMed Central  PubMed  Google Scholar 

  • Kahn CJF et al (2008) A novel bioreactor for ligament tissue engineering. Bio-Med Mater Eng 18(4–5):283–287

    CAS  Google Scholar 

  • Kardestuncer T et al (2006) RGD-tethered silk substrate stimulates the differentiation of human tendon cells. Clin Orthop Relat Res 448:234–239

    CAS  PubMed  Google Scholar 

  • Kawai T et al (2010) Anterior cruciate ligament reconstruction using chitin-coated fabrics in a rabbit model. Artif Organs 34(1):55–64

    CAS  PubMed  Google Scholar 

  • Kessler MA et al (2008) Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc 16(5):442–448

    CAS  PubMed  Google Scholar 

  • Kimura Y et al (2008) Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping. Tissue Eng C: Methods 14(1):47–57

    CAS  Google Scholar 

  • Kloxin AM, Benton JA, Anseth KS (2010) In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31(1):1–8

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kreja L et al (2012) Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(l-lactide) scaffold for ligament tissue engineering. J Mater Sci Mater Med 23(10):2575–2582

    Google Scholar 

  • Kuo C, Marturano J, Tuan R (2010) Novel strategies in tendon and ligament tissue engineering: advanced biomaterials and regeneration motifs. Sports Med Arthrosc Rehabil Ther Technol 2(1):1–14

    Google Scholar 

  • Kwansa AL et al (2010) Novel matrix based anterior cruciate ligament (ACL) regeneration. Soft Matter 6(20):5016–5025

    CAS  Google Scholar 

  • Laboute E et al (2010) Analysis of return to competition and repeat rupture for 298 anterior cruciate ligament reconstructions with patellar or hamstring tendon autograft in sports people. Ann Phys Rehabil Med 53(10):598–614

    CAS  PubMed  Google Scholar 

  • Laurencin CT, Freeman JW (2005) Ligament tissue engineering: an evolutionary materials science approach. Biomaterials 26(36):7530–7536

    CAS  PubMed  Google Scholar 

  • Laurent CP et al (2011) Morphological characterization of a novel scaffold for anterior cruciate ligament tissue engineering. J Biomech Eng 133(6):065001-1–065001-9

    Google Scholar 

  • Laurent CP et al (2012) A multilayer braided scaffold for anterior cruciate ligament: mechanical modeling at the fiber scale. J Mech Behav Biomed Mater 12:184–196

    CAS  PubMed  Google Scholar 

  • Lee CH et al (2005) Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26(11):1261–1270

    CAS  PubMed  Google Scholar 

  • Lee J et al (2011) Enhanced regeneration of the ligament-bone interface using a poly(l-lactide-co-ε-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel. Acta Biomater 7(1):244–257

    CAS  PubMed  Google Scholar 

  • Legnani C et al (2010) Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature. Int Orthop 34(4):465–471

    PubMed Central  PubMed  Google Scholar 

  • Leiter JRS et al (2014) Long-term follow-up of ACL reconstruction with hamstring autograft. Knee Surg Sports Traumatol Arthrosc 22(5):1061–1069

    Google Scholar 

  • Leong NL, Petrigliano FA, McAllister DR (2014) Current tissue engineering strategies in anterior cruciate ligament reconstruction. J Biomed Mater Res 102(5):1614–1624

    Google Scholar 

  • Letsch R, Garcia-Schürmann J (1993) Experimental evaluation of various anchoring techniques for synthetic ligament. Unfallchirurgie 19(2):74–80

    CAS  PubMed  Google Scholar 

  • Leys T et al (2012) Clinical results and risk factors for reinjury 15 years after anterior cruciate ligament reconstruction: a prospective study of hamstring and patellar tendon grafts. Am J Sports Med 40(3):595–605

    PubMed  Google Scholar 

  • Li X, Snedeker JG (2013) Wired silk architectures provide a biomimetic ACL tissue engineering scaffold. J Mech Behav Biomed Mater 22:30–40

    PubMed  Google Scholar 

  • Li X et al (2009) Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 9(7):2763–2768

    PubMed Central  PubMed  Google Scholar 

  • Li X et al (2014) A novel silk-TCP-PEEK construct for anterior cruciate ligament reconstruction: an off-the shelf alternative to a bone-tendon-bone autograft. Biofabrication 6(1):015010

    PubMed  Google Scholar 

  • Lidén M et al (2008) Osteoarthritic changes after anterior cruciate ligament reconstruction using bone-patellar tendon-bone or hamstring tendon autografts: a retrospective, 7-year radiographic and clinical follow-up study. Arthroscopy 24(8):899–908

    PubMed  Google Scholar 

  • LigaGen Ligament & Tendon Bioreactor. Available from: http://www.tissuegrowth.com/prod_ligament.cfm

  • Liljensten E et al (2002) Studies of polyurethane urea bands for ACL reconstruction. J Mater Sci Mater Med 13(4):351–359

    CAS  PubMed  Google Scholar 

  • Liu H et al (2007) Modification of sericin-free silk fibers for ligament tissue engineering application. J Biomed Mater Res B Appl Biomater 82(1):129–138

    PubMed  Google Scholar 

  • Liu H et al (2008a) A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials 29(10):1443–1453

    CAS  PubMed  Google Scholar 

  • Liu H et al (2008b) The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomaterials 29(6):662–674

    CAS  PubMed  Google Scholar 

  • Liu C, Han Z, Czernuszka JT (2009) Gradient collagen/nanohydroxyapatite composite scaffold: development and characterization. Acta Biomater 5(2):661–669

    CAS  PubMed  Google Scholar 

  • Liu H et al (2015) Comparison of cellular responses of mesenchymal stem cells derived from bone marrow and synovium on combined silk scaffolds. J Biomed Mater Res A 103(1):115–125

    Google Scholar 

  • Lu HH et al (2003) Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res A 64(3):465–474

    PubMed  Google Scholar 

  • Lu HH et al (2005) Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26(23):4805–4816

    CAS  PubMed  Google Scholar 

  • Lu Q et al (2011) Degradation mechanism and control of silk fibroin. Biomacromolecules 12(4):1080–1086

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma J et al (2011) Three-dimensional engineered bone–ligament–bone constructs for anterior cruciate ligament replacement. Tissue Eng Part A 18(1–2):103–116

    PubMed Central  PubMed  Google Scholar 

  • Macarini L et al (2008) Poly-L-lactic acid – hydroxyapatite (PLLA-HA) bioabsorbable interference screws for tibial graft fixation in anterior cruciate ligament (ACL) reconstruction surgery: MR evaluation of osteointegration and degradation features. Radiol Med 113(8):1185–1197

    CAS  PubMed  Google Scholar 

  • Majima T et al (2005) Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering. J Orthop Sci 10(3):302–307

    CAS  PubMed  Google Scholar 

  • Majima T et al (2007) Chitosan-based hyaluronan hybrid polymer fibre scaffold for ligament and tendon tissue engineering. Proc IME B J Eng H: J Eng Med 221(5):537–546

    CAS  Google Scholar 

  • Marklein RA, Burdick JA (2010) Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter 6(1):136–143

    CAS  Google Scholar 

  • Martin Y, Vermette P (2005) Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials 26(35):7481–7503

    CAS  PubMed  Google Scholar 

  • Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86

    CAS  PubMed  Google Scholar 

  • Marx RG et al (2003) Beliefs and attitudes of members of the American Academy of Orthopaedic Surgeons regarding the treatment of anterior cruciate ligament injury. Arthroscopy 19(7):762–770

    PubMed  Google Scholar 

  • Mascarenhas R, MacDonald PB (2008) Anterior cruciate ligament reconstruction: a look at prosthetics – past, present and possible future. McGill J Med 11(1):29–37

    PubMed Central  PubMed  Google Scholar 

  • Mathew AP et al (2012a) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87(3):2291–2298

    CAS  Google Scholar 

  • Mathew A et al (2012b) Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose 19(1):139–150

    CAS  Google Scholar 

  • Mathew AP et al (2013) Biocompatible fibrous networks of cellulose nanofibres and collagen crosslinked using genipin: potential as artificial ligament/tendons. Macromol Biosci 13:289–298

    CAS  PubMed  Google Scholar 

  • Matsumoto H, Fujikawa K (2001) Leeds-Keio artificial ligament: a new concept for the anterior cruciate ligament reconstruction of the knee. Keio J Med 50(3):161–166

    CAS  PubMed  Google Scholar 

  • Mayr R et al (2012) Revision anterior cruciate ligament reconstruction: an update. Arch Orthop Trauma Surg 132(9):1299–1313

    CAS  PubMed  Google Scholar 

  • Meinel L et al (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155

    CAS  PubMed  Google Scholar 

  • Mihelic R et al (2011) Long-term results of anterior cruciate ligament reconstruction: a comparison with non-operative treatment with a follow-up of 17–20 years. Int Orthop 35(7):1093–1097

    PubMed Central  PubMed  Google Scholar 

  • Miller MD, Peters CL, Allen B (2006) Early aseptic loosening of a total knee arthroplasty due to Gore-Tex particle–induced osteolysis. J Arthroplasty 21(5):765–770

    PubMed  Google Scholar 

  • Mizutani N et al (2014) The behavior of ligament cells cultured on elastin and collagen scaffolds. J Artif Organs 17(1):50–59

    CAS  PubMed  Google Scholar 

  • Molloy T, Wang Y, Murrell GAC (2003) The roles of growth factors in tendon and ligament healing. Sports Med 33(5):381–394

    PubMed  Google Scholar 

  • Mooney DJ, Vacanti JP (1993) Tissue engineering using cells and synthetic polymers. Transplant Rev 7(3):153–162

    Google Scholar 

  • Moreau JE et al (2005) Sequential growth factor application in bone marrow stromal cell ligament engineering. Tissue Eng 11(11–12):1887–1897

    CAS  PubMed  Google Scholar 

  • Moreau J et al (2006) Sequential growth factor stimulation of bone marrow stromal cells in extended culture. Tissue Eng 12(10):2905–2912

    CAS  PubMed  Google Scholar 

  • Moreau JE et al (2008) Sequential biochemical and mechanical stimulation in the development of tissue-engineered ligaments. Tissue Eng A 14(7):1161–1172

    CAS  Google Scholar 

  • Munoz-Pinto DJ et al (2010) Inorganic-organic hybrid scaffolds for osteochondral regeneration. J Biomed Mater Res A 94(1):112–121

    PubMed  Google Scholar 

  • Muren O, Dahlstedt L, Dalén N (2003) Reconstruction of acute anterior cruciate ligament injuries: a prospective, randomised study of 40 patients with 7-year follow-up. No advantage of synthetic augmentation compared to a traditional patellar tendon graft. Arch Orthop Trauma Surg 123(4):144–147

    PubMed  Google Scholar 

  • Murray MM et al (2000) Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Ser A 82(10):1387–1397

    Google Scholar 

  • Murray MM et al (2003) The effect of selected growth factors on human anterior cruciate ligament cell interactions with a three-dimensional collagen-GAG scaffold. J Orthop Res 21(2):238–244

    Google Scholar 

  • Murray MM et al (2006a) The effect of thrombin on ACL fibroblast interactions with collagen hydrogels. J Orthop Res 24(3):508–515

    CAS  PubMed  Google Scholar 

  • Murray MM et al (2006b) Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL. J Orthop Res 24(4):820–830

    CAS  PubMed  Google Scholar 

  • Murray MM et al (2007a) Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen–platelet-rich plasma scaffold. J Orthop Res 25(8):1007–1017

    CAS  PubMed  Google Scholar 

  • Murray MM et al (2007b) Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res 25(1):81–91

    PubMed  Google Scholar 

  • Murray MM et al (2009) Platelet-rich plasma alone is not sufficient to enhance suture repair of the ACL in skeletally immature animals: an in vivo study. J Orthop Res 27(5):639–645

    PubMed Central  PubMed  Google Scholar 

  • Nagda SH et al (2010) Cost analysis of outpatient anterior cruciate ligament reconstruction: autograft versus allograft. Clin Orthop Relat Res 468(5):1418–1422

    PubMed Central  PubMed  Google Scholar 

  • Naghashzargar E et al (2014) Application of intelligent neural network method for prediction of mechanical behavior of wire-rope scaffold in tissue engineering. J Text Inst 105(3):264–274

    Google Scholar 

  • Naveen Kumar M, Rama Raja B, Sreenivasa Rao P (2011) Review on bioreactors in tissue engineering. BioTechnol Indian J 5(4):246–253

    Google Scholar 

  • Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B: Rev 14(2):149–165

    CAS  Google Scholar 

  • Nishimoto H et al (2012) Ligament regeneration using an absorbable stent-shaped poly-l-lactic acid scaffold in a rabbit model. Int Orthop 36(11):2379–2386

    PubMed Central  PubMed  Google Scholar 

  • Nöth U et al (2005) Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel. Cytotherapy 7(5):447–455

    PubMed  Google Scholar 

  • Oh YH et al (2006) Hybrid femoral fixation of soft-tissue grafts in anterior cruciate ligament reconstruction using the EndoButton CL and bioabsorbable interference screws: a biomechanical study. Arthroscopy 22(11):1218–1224

    PubMed  Google Scholar 

  • Oragui E, Nannaparaju M, Khan WS (2011) The role of bioreactors in tissue engineering for musculoskeletal applications. Open Orthop J 5:267–270

    PubMed Central  PubMed  Google Scholar 

  • Ouyang HW et al (2005) Assembly of bone marrow stromal cell sheets with knitted poly (L-lactide) scaffold for engineering ligament analogs. J Biomed Mater Res B Appl Biomater 75B(2):264–271

    CAS  Google Scholar 

  • Palsson BQ, Bhatia SN (2004) Tissue engineering. Pearson Prentice Hall, San Diego

    Google Scholar 

  • Panas E, Gatt CJ, Dunn MG (2009) In vitro analysis of a tissue-engineered anterior cruciate ligament scaffold. In: Bioengineering conference, 2009 IEEE 35th annual northeast

    Google Scholar 

  • Panas-Perez E, Gatt C, Dunn M (2013) Development of a silk and collagen fiber scaffold for anterior cruciate ligament reconstruction. J Mater Sci Mater Med 24(1):257–265

    CAS  PubMed  Google Scholar 

  • Panilaitis B et al (2003) Macrophage responses to silk. Biomaterials 24(18):3079–3085

    CAS  PubMed  Google Scholar 

  • Parent G, Huppé N, Langelier E (2011) Low stress tendon fatigue is a relatively rapid process in the context of overuse injuries. Ann Biomed Eng 39(5):1535–1545

    PubMed  Google Scholar 

  • Paxton JZ et al (2009) Engineering the bone-ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng Part A 15(6):1201–1209

    CAS  PubMed  Google Scholar 

  • Paxton JZ et al (2010a) Factors affecting the longevity and strength in an in vitro model of the bone-ligament interface. Ann Biomed Eng 38(6):2155–2166

    PubMed Central  PubMed  Google Scholar 

  • Paxton JZ, Grover LM, Baar K (2010b) Engineering an in vitro model of a functional ligament from bone to bone. Tissue Eng Part A 16(11):3515–3525

    CAS  PubMed  Google Scholar 

  • Pearsall AW IV et al (2003) A biomechanical comparison of three lower extremity tendons for ligamentous reconstruction about the knee. Arthroscopy 19(10):1091–1096

    PubMed  Google Scholar 

  • Peh R-F et al (2007) Novel electrospun-knitted silk scaffolds for ligament tissue engineering. In: Magjarevic R, Nagel JH (eds) World congress on medical physics and biomedical engineering 2006. Springer, Berlin, pp 3287–3290

    Google Scholar 

  • Pernin J et al (2010) Long-term follow-up of 24.5 years after intra-articular anterior cruciate ligament reconstruction with lateral extra-articular augmentation. Am J Sports Med 38(6):1094–1102

    PubMed  Google Scholar 

  • Petrigliano FA, McAllister DR, Wu BM (2006) Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy 22(4):441–451

    PubMed  Google Scholar 

  • Phillips JE et al (2008) Engineering graded tissue interfaces. Proc Natl Acad Sci U S A 105(34):12170–12175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pittenger MF, Flake AM, Deans RJ (2002) Stem cell culture: meshenchymal stem cells from bone marrow. In: Atala A, Lanza RP (eds) Methods of tissue engineering. Academic, San Diego, pp 461–469

    Google Scholar 

  • Platzer W (2003) Color atlas of human anatomy. Thieme publishing group, Stutgart, pp 206–213

    Google Scholar 

  • Poehling GG et al (2005) Analysis of outcomes of anterior cruciate ligament repair with 5-year follow-up: allograft versus autograft. Arthroscopy 21(7):774.e1–774.e15

    Google Scholar 

  • Qiu Y et al (2014) Cyclic tension promotes fibroblastic differentiation of human MSCs cultured on collagen-fibre scaffolds. J Tissue Eng Regen Med :n/a–n/a

    Google Scholar 

  • Ramalingam M et al (2012) Nanofiber scaffold gradients for interfacial tissue engineering. J Biomater Appl 27(6):695–705

    PubMed Central  PubMed  Google Scholar 

  • Rice RS, Waterman BR, Lubowitz JH (2012) Allograft versus autograft decision for anterior cruciate ligament reconstruction: an expected-value decision analysis evaluating hypothetical patients. Arthroscopy 28(4):539–547

    PubMed  Google Scholar 

  • Riechert K et al (2001) Semiquantitative analysis of types I and III collagen from tendons and ligaments in a rabbit model. J Orthop Sci 6(1):68–74

    CAS  PubMed  Google Scholar 

  • Robayo LM et al (2011) New ligament healing model based on tissue-engineered collagen scaffolds. Wound Repair Regen 19(1):38–48

    PubMed  Google Scholar 

  • Rodrigues MT, Reis RL, Gomes ME (2013) Engineering tendon and ligament tissues: present developments towards successful clinical products. J Tissue Eng Regen Med 7(9):673–686

    CAS  PubMed  Google Scholar 

  • Roe J et al (2005) A 7-year follow-up of patellar tendon and hamstring tendon grafts for arthroscopic anterior cruciate ligament reconstruction: differences and similarities. Am J Sports Med 33(9):1337–1345

    PubMed  Google Scholar 

  • Rong-Mei X (2011) Tissue engineered ligament in repair of sports-induced anterior cruciate ligament injury. J Clin Rehabil Tissue Eng Res 15(21):3941–3944

    Google Scholar 

  • Sahoo S et al (2006) Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng 12(1):91–99

    CAS  PubMed  Google Scholar 

  • Sahoo S, Cho-Hong JG, Siew-Lok T (2007) Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering. Biomed Mater 2(3):169–173

    CAS  PubMed  Google Scholar 

  • Sahoo S, Lok Toh S, Hong Goh JC (2010a) PLGA nanofiber-coated silk microfibrous scaffold for connective tissue engineering. J Biomed Mater Res B Appl Biomater 95(1):19–28

    PubMed  Google Scholar 

  • Sahoo S, Toh SL, Goh JCH (2010b) A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials 31(11):2990–2998

    CAS  PubMed  Google Scholar 

  • Sahoo S et al (2010c) Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications. Differentiation 79(2):102–110

    CAS  PubMed  Google Scholar 

  • Sajovic M et al (2011) Quality of life and clinical outcome comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: an 11-year follow-up of a randomized controlled trial. Am J Sports Med 39(10):2161–2169

    PubMed  Google Scholar 

  • Samavedi S et al (2011) Fabrication of a model continuously graded co-electrospun mesh for regeneration of the ligament–bone interface. Acta Biomater 7(12):4131–4138

    CAS  PubMed  Google Scholar 

  • Samavedi S et al (2012) Response of bone marrow stromal cells to graded co-electrospun scaffolds and its implications for engineering the ligament-bone interface. Biomaterials 33(31):7727–7735

    CAS  PubMed  Google Scholar 

  • Sarukawa J et al (2011) Effects of chitosan-coated fibers as a scaffold for three-dimensional cultures of rabbit fibroblasts for ligament tissue engineering. J Biomater Sci Polym Ed 22(4–6):717–732

    CAS  PubMed  Google Scholar 

  • Scheffler SU et al (2008) Fresh-frozen free-tendon allografts versus autografts in anterior cruciate ligament reconstruction: delayed remodeling and inferior mechanical function during long-term healing in sheep. Arthroscopy 24(4):448–458

    PubMed  Google Scholar 

  • Seo YK et al (2007) The biocompatibility of silk scaffold for tissue engineered ligaments. Key Eng Mater 342–343:73–76

    Google Scholar 

  • Seo Y-K et al (2009) Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments. J Orthop Res 27(4):495–503

    PubMed  Google Scholar 

  • Shelton WR, Fagan BC (2011) Autografts commonly used in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 19(5):259–264

    PubMed  Google Scholar 

  • Sherman OH, Banffy MB (2004) Anterior cruciate ligament reconstruction: which graft is best? Arthroscopy 20(9):974–980

    PubMed  Google Scholar 

  • Shi J et al (2010) Incorporating protein gradient into electrospun nanofibers as scaffolds for tissue engineering. ACS Appl Mater Interfaces 2(4):1025–1030

    CAS  PubMed  Google Scholar 

  • Shieh SJ, Vacanti JP (2005) State-of-the-art tissue engineering: from tissue engineering to organ building. Surgery 137(1):1–7

    PubMed  Google Scholar 

  • Silva SS, Mano JF, Reis RL (2010) Potential applications of natural origin polymer-based systems in soft tissue regeneration. Crit Rev Biotechnol 30(3):200–221

    CAS  PubMed  Google Scholar 

  • Silver FH, Freeman JW, Seehra GP (2003) Collagen self-assembly and the development of tendon mechanical properties. J Biomech 36(10):1529–1553

    PubMed  Google Scholar 

  • Slaughter BV et al (2009) Hydrogels in regenerative medicine. Adv Mater (Weinheim, Ger) 21(32–33):3307–3329

    CAS  Google Scholar 

  • Spalazzi JP et al (2006) Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng 12(12):3497–3508

    CAS  PubMed  Google Scholar 

  • Spalazzi JP et al (2008a) In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A 86(1):1–12

    PubMed  Google Scholar 

  • Spalazzi J et al (2008b) Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage markers. Clin Orthop Relat Res 466(8):1938–1948

    PubMed Central  PubMed  Google Scholar 

  • Spindler KP et al (2009) The use of platelets to affect functional healing of an anterior cruciate ligament (ACL) autograft in a caprine ACL reconstruction model. J Orthop Res 27(5):631–638

    PubMed Central  PubMed  Google Scholar 

  • Stone KR et al (2007) Anterior cruciate ligament reconstruction with a porcine xenograft: a serologic, histologic, and biomechanical study in primates. Arthroscopy 23(4):411–419.e1

    PubMed  Google Scholar 

  • Struewer J et al (2012) Knee function and prevalence of osteoarthritis after isolated anterior cruciate ligament reconstruction using bone-patellar tendon-bone graft: long-term follow-up. Int Orthop 36(1):171–177

    PubMed Central  PubMed  Google Scholar 

  • Struewer J et al (2013) Clinical outcome and prevalence of osteoarthritis after isolated anterior cruciate ligament reconstruction using hamstring graft: follow-up after two and ten years. Int Orthop 37(2):271–277

    PubMed Central  PubMed  Google Scholar 

  • Subramony SD et al (2014) Combined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffolds. J Biomech 47(9):2189–2196

    PubMed Central  PubMed  Google Scholar 

  • Surrao DC, Waldman SD, Amsden BG (2012a) Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering. Acta Biomater 8(11):3997–4006

    CAS  PubMed  Google Scholar 

  • Surrao DC et al (2012b) A crimp-like microarchitecture improves tissue production in fibrous ligament scaffolds in response to mechanical stimuli. Acta Biomater 8(10):3704–3713

    CAS  PubMed  Google Scholar 

  • Tamayol A et al (2013) Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv 31(5):669–687

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teh TKH, Goh JCH, Toh SL (2009) Characterization of electrospun substrates for ligament regeneration using bone marrow stromal cells. In: Lim C, Goh JH (eds) 13th international conference on biomedical engineering. Springer, Berlin, pp 1488–1491

    Google Scholar 

  • Teh TKH, Toh S-L, Goh JCH (2011) Aligned hybrid silk scaffold for enhanced differentiation of mesenchymal stem cells into ligament fibroblasts. Tissue Eng Part C Methods 17(6):687–703

    CAS  PubMed  Google Scholar 

  • Tetsunaga T et al (2009) Mechanical stretch stimulates integrin [alpha]V[beta]3-mediated collagen expression in human anterior cruciate ligament cells. J Biomech 42(13):2097–2103

    PubMed  Google Scholar 

  • Teuschl AH, Van Griensven M, Redl H (2014) Sericin removal from raw Bombyx mori silk scaffolds of high hierarchical order. Tissue Eng Part C Methods 20(5):431–439

    CAS  PubMed  Google Scholar 

  • Thayer PS et al (2013) Cellularized cylindrical fiber/hydrogel composites for ligament tissue engineering. Biomacromolecules 15(1):75–83

    PubMed  Google Scholar 

  • Toh SL et al (2006) Novel silk scaffolds for ligament tissue engineering applications. Key Eng Mater 326–328:727–730

    Google Scholar 

  • Tovar N et al (2012) ACL reconstruction using a novel hybrid scaffold composed of polyarylate fibers and collagen fibers. J Biomed Mater Res A 100A(11):2913–2920

    CAS  Google Scholar 

  • Vacanti JP (2012) Tissue engineering and the road to whole organs. Br J Surg 99(4):451–453

    CAS  PubMed  Google Scholar 

  • Valentí Nin JR et al (2009) Has platelet-rich plasma any role in anterior cruciate ligament allograft healing? Arthroscopy 25(11):1206–1213

    Google Scholar 

  • Van Den Braembussche P et al (1996) Accurate tracking control of linear synchronous motor machine tool axes. Mechatronics 6(5):507–521

    Google Scholar 

  • Van Eijk F et al (2004) Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng 10(5–6):893–903

    PubMed  Google Scholar 

  • van Eijk F et al (2008) The effect of timing of mechanical stimulation on proliferation and differentiation of goat bone marrow stem cells cultured on braided PLGA scaffolds. Tissue Eng Part A 14(8):1425–1433

    PubMed  Google Scholar 

  • van Varseveld RB, Bone GM (1997) Accurate position control of a pneumatic actuator using on/off solenoid valves. Mechatron IEEE/ASME Trans 2(3):195–204

    Google Scholar 

  • Vaquette C et al (2010) Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering. J Biomed Mater Res A 94A(4):1270–1282

    CAS  Google Scholar 

  • Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32(8–9):991–1007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vieira AC, Guedes RM, Marques AT (2009) Development of ligament tissue biodegradable devices: a review. J Biomech 42(15):2421–2430

    CAS  PubMed  Google Scholar 

  • Vieira AC, Guedes RM, Tita V (2012) Constitutive models for biodegradable thermoplastic ropes for ligament repair. Compos Struct 94(11):3149–3159

    Google Scholar 

  • Vunjak-Novakovic G et al (2004) Tissue engineering of ligaments. Annu Rev Biomed Eng 6(1):131–156

    CAS  PubMed  Google Scholar 

  • Walters VI, Kwansa AL, Freeman JW (2012) Design and analysis of braid-twist collagen scaffolds. Connect Tissue Res 53(3):255–266

    CAS  PubMed  Google Scholar 

  • Wang INE et al (2006) Age-dependent changes in matrix composition and organization at the ligament-to-bone insertion. J Orthop Res 24(8):1745–1755

    CAS  PubMed  Google Scholar 

  • Wang INE et al (2007) Role of osteoblast-fibroblast interactions in the formation of the ligament-to-bone interface. J Orthop Res 25(12):1609–1620

    CAS  PubMed  Google Scholar 

  • Wang Y et al (2008) In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 29(24–25):3415–3428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X et al (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release 134(2):81–90

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X et al (2011) Applications of knitted mesh fabrication techniques to scaffolds for tissue engineering and regenerative medicine. J Mech Behav Biomed Mater 4(7):922–932

    CAS  PubMed  Google Scholar 

  • Wang T et al (2012) Bioreactor design for tendon/ligament engineering. Tissue Eng Part B Rev 19(2):133–146

    PubMed Central  PubMed  Google Scholar 

  • Weadock KS et al (1995) Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res 29(11):1373–1379

    CAS  PubMed  Google Scholar 

  • Webb K et al (2006) Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech 39(6):1136–1144

    PubMed  Google Scholar 

  • Weitzel PP et al (2002) Future direction of the treatment of ACL ruptures. Orthop Clin N Am 33(4):653–661

    Google Scholar 

  • Wendt D et al (2003) Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol Bioeng 84(2):205–214

    CAS  PubMed  Google Scholar 

  • Wendt D et al (2009) Bioreactors in tissue engineering: scientific challenges and clinical perspectives. Adv Biochem Eng Biotechnol 112:1–27

    Google Scholar 

  • Whitaker MJ et al (2001) Growth factor release from tissue engineering scaffolds. J Pharm Pharmacol 53(11):1427–1437

    CAS  PubMed  Google Scholar 

  • Wilson TW, Zafuta MP, Zobitz M (1999) A biomechanical analysis of matched bone-patellar tendon-bone and double-looped semitendinosus and gracilis tendon grafts. Am J Sports Med 27(2):202–207

    CAS  PubMed  Google Scholar 

  • Wipfler B et al (2011) Anterior cruciate ligament reconstruction using patellar tendon versus hamstring tendon: a prospective comparative study with 9-year follow-up. Arthroscopy 27(5):653–665

    PubMed  Google Scholar 

  • Woo SLY et al (1983) Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res 1(1):22–29

    CAS  PubMed  Google Scholar 

  • Woo SLY et al (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19(3):217–225

    CAS  PubMed  Google Scholar 

  • Woo SLY et al (2005) Basic science of ligament healing: C. Anterior cruciate ligament graft biomechanics and knee kinematics. Sports Med Arthrosc Rev 13(3):161–169

    Google Scholar 

  • Xerogeanes JW et al (1998) A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament. Ann Biomed Eng 26(3):345–352

    CAS  PubMed  Google Scholar 

  • Yahia L (1997) Ligaments and ligamentoplasties. Springer, Berlin

    Google Scholar 

  • Yates EW et al (2012) Ligament tissue engineering and its potential role in anterior cruciate ligament reconstruction. Stem Cells Int 2012:438125

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zantop T et al (2004) Biomechanical evaluation of a new cross-pin technique for the fixation of different sized bone-patellar tendon-bone grafts. Knee Surg Sports Traumatol Arthrosc 12(6):520–527

    PubMed  Google Scholar 

  • Zhang X et al (2012) Biomimetic scaffold design for functional and integrative tendon repair. J Shoulder Elbow Surg 21(2):266–277

    PubMed Central  PubMed  Google Scholar 

  • Zhou D et al (2005) Differential MMP-2 activity of ligament cells under mechanical stretch injury: an in vitro study on human ACL and MCL fibroblasts. J Orthop Res 23(4):949–957

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from Australian Research Council and the University of Sydney. AN acknowledges the International Postgraduate Research Scholarship Award for his PhD degree.

Disclosure Statement

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariba Dehghani Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Negahi Shirazi, A., Chrzanowski, W., Khademhosseini, A., Dehghani, F. (2015). Anterior Cruciate Ligament: Structure, Injuries and Regenerative Treatments. In: Bertassoni, L., Coelho, P. (eds) Engineering Mineralized and Load Bearing Tissues. Advances in Experimental Medicine and Biology, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-22345-2_10

Download citation

Publish with us

Policies and ethics