Skip to main content

3D Printing and Biofabrication for Load Bearing Tissue Engineering

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 881))

Abstract

Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albrecht DR et al (2006) Probing the role of multicellular organization in three-dimensional microenvironments. Nat Methods 3(5):369–375

    CAS  PubMed  Google Scholar 

  • Arai K et al (2011) Three-dimensional inkjet biofabrication based on designed images. Biofabrication 3(3):034113

    PubMed  Google Scholar 

  • Azari A, Nikzad S (2009) The evolution of rapid prototyping in dentistry: a review. Rapid Prototyp J 15(3):216–225

    Google Scholar 

  • Bajaj P et al (2012) 3-D biofabrication using stereolithography for biology and medicine. Conf Proc IEEE Eng Med Biol Soc 2012:6805–6808

    PubMed  Google Scholar 

  • Bajaj P et al (2014) 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 16:247

    Google Scholar 

  • Balakrishnan B, Banerjee R (2011) Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev 111(8):4453–4474

    CAS  PubMed  Google Scholar 

  • Benders KE et al (2013) Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 31(3):169–176

    CAS  PubMed  Google Scholar 

  • Bidra AS, Taylor TD, Agar JR (2013) Computer-aided technology for fabricating complete dentures: systematic review of historical background, current status, and future perspectives. J Prosthet Dent 109(6):361–366

    PubMed  Google Scholar 

  • Billiet T et al (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041

    CAS  PubMed  Google Scholar 

  • Bluteau G et al (2008) Stem cells for tooth engineering. Eur Cell Mater 16:1–9

    CAS  PubMed  Google Scholar 

  • Boland T et al (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol 272(2):497–502

    PubMed  Google Scholar 

  • Boland T et al (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917

    CAS  PubMed  Google Scholar 

  • Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504

    CAS  Google Scholar 

  • Burdick JA, Anseth KS (2002) Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23(22):4315–4323

    CAS  PubMed  Google Scholar 

  • Campbell PG et al (2005) Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials 26(33):6762–6770

    CAS  PubMed  Google Scholar 

  • Chan DC et al (2004) Application of rapid prototyping to operative dentistry curriculum. J Dent Educ 68(1):64–70

    PubMed  Google Scholar 

  • Chang PS et al (2003) The accuracy of stereolithography in planning craniofacial bone replacement. J Craniofac Surg 14(2):164–170

    PubMed  Google Scholar 

  • Chen CH, Chen JP, Lee MY (2011) Effects of gelatin modification on rapid prototyping PCL scaffolds for cartilage engineering. J Mech Med Biol 11(5):993–1002

    Google Scholar 

  • Cohen DL et al (2010) Additive manufacturing for in situ repair of osteochondral defects. Biofabrication 2(3):035004

    PubMed  Google Scholar 

  • Cooke MN et al (2003) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater 64(2):65–69

    PubMed  Google Scholar 

  • Cooper GM et al (2010a) Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng Part A 16(5):1749–1759

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cooper GM et al (2010b) Testing the critical size in calvarial bone defects: revisiting the concept of a critical-size defect. Plast Reconstr Surg 125(6):1685–1692

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cui X et al (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2):149–155

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Coppi P et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106

    PubMed  Google Scholar 

  • Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338(6109):921–926

    CAS  PubMed  Google Scholar 

  • Duan B et al (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12):4495–4505

    CAS  PubMed  Google Scholar 

  • El-Bialy T (2012) Editorial: a review of tooth tissue engineering studies. Open Dent J 6:212–213

    PubMed Central  PubMed  Google Scholar 

  • Elomaa L et al (2011) Preparation of poly(epsilon-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater 7(11):3850–3856

    CAS  PubMed  Google Scholar 

  • Eppley BL, Pietrzak WS, Blanton MW (2005) Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg 16(6):981–989

    PubMed  Google Scholar 

  • Eyrich D et al (2007) In vitro and in vivo cartilage engineering using a combination of chondrocyte-seeded long-term stable fibrin gels and polycaprolactone-based polyurethane scaffolds. Tissue Eng 13(9):2207–2218

    CAS  PubMed  Google Scholar 

  • Fecek C et al (2008) Chondrogenic derivatives of embryonic stem cells seeded into 3D polycaprolactone scaffolds generated cartilage tissue in vivo. Tissue Eng Part A 14(8):1403–1413

    CAS  PubMed  Google Scholar 

  • Fedorovich NE et al (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8):1905–1925

    CAS  PubMed  Google Scholar 

  • Fedorovich NE et al (2011a) Organ printing: the future of bone regeneration? Trends Biotechnol 29(12):601–606

    CAS  PubMed  Google Scholar 

  • Fedorovich NE et al (2011b) Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A 17(15–16):2113–2121

    PubMed  Google Scholar 

  • Fedorovich NE et al (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18(1):33–44

    PubMed Central  CAS  PubMed  Google Scholar 

  • Filardo G et al (2013) Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy 29(1):174–186

    PubMed  Google Scholar 

  • Fosang AJ, Beier F (2011) Emerging Frontiers in cartilage and chondrocyte biology. Best Pract Res Clin Rheumatol 25(6):751–766

    CAS  PubMed  Google Scholar 

  • Goodridge RD, Dalgarno KW, Wood DJ (2006) Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications. Proc Inst Mech Eng H 220(1):57–68

    CAS  PubMed  Google Scholar 

  • Guenther D et al (2013) Enhanced migration of human bone marrow stromal cells in modified collagen hydrogels. Int Orthop 37(8):1605–1611

    PubMed Central  PubMed  Google Scholar 

  • Gurkan UA et al (2014) Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol Pharm 11(7):2151–2159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524

    CAS  PubMed  Google Scholar 

  • Hollister SJ (2009) Scaffold design and manufacturing: from concept to clinic. Adv Mater 21(32–33):3330–3342

    CAS  PubMed  Google Scholar 

  • Hollister SJ, Murphy WL (2011) Scaffold translation: barriers between concept and clinic. Tissue Eng Part B Rev 17(6):459–474

    PubMed Central  PubMed  Google Scholar 

  • Hu B et al (2006) Tissue engineering of tooth crown, root, and periodontium. Tissue Eng 12(8):2069–2075

    CAS  PubMed  Google Scholar 

  • Hung K‐C, Tseng C‐S, Hsu S‐h (2014) Synthesis and 3D printing of biodegradable polyurethane elastomer by a water‐based process for cartilage tissue engineering applications. Adv Healthcare Mater 3(10):1578–1587

    CAS  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    CAS  PubMed  Google Scholar 

  • Imani R et al (2012) Optimization and comparison of two different 3D culture methods to prepare cell aggregates as a bioink for organ printing. Biocell 36(1):37–45

    CAS  PubMed  Google Scholar 

  • Jakab K et al (2004) Organ printing: fiction or science. Biorheology 41(3–4):371–375

    CAS  PubMed  Google Scholar 

  • Jakab K et al (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2(2):022001

    PubMed Central  PubMed  Google Scholar 

  • Jaramillo L, Briceno I, Duran C (2012) Odontogenic cell culture in PEGDA hydrogel scaffolds for use in tooth regeneration protocols. Acta Odontol Latinoam 25(3):243–254

    PubMed  Google Scholar 

  • Jeong CG, Hollister SJ (2010) A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials 31(15):4304–4312

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kang SW et al (2011) Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone 48(2):298–306

    CAS  PubMed  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    CAS  PubMed  Google Scholar 

  • Keller L et al (2011) Tooth engineering: searching for dental mesenchymal cells sources. Front Physiol 2:7

    PubMed Central  PubMed  Google Scholar 

  • Kemppainen JM, Hollister SJ (2010) Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. J Biomed Mater Res A 94(1):9–18

    PubMed  Google Scholar 

  • Kim YB, Kim G (2012) Rapid-prototyped collagen scaffolds reinforced with PCL/β-TCP nanofibres to obtain high cell seeding efficiency and enhanced mechanical properties for bone tissue regeneration. J Mater Chem 22(33):16880–16889

    CAS  Google Scholar 

  • Kim K et al (2010a) Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev 16(5):523–539

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim K, Lee CH, Kim BK, Mao JJ (2010b) Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 89(8):842–847

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim K et al (2011) The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials 32(15):3750–3763

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kundu J et al (2013) An additive manufacturing‐based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. doi:10.1002/term.1682

  • Lan Levengood SK et al (2010) The effect of BMP-2 on micro- and macroscale osteointegration of biphasic calcium phosphate scaffolds with multiscale porosity. Acta Biomater 6(8):3283–3291

    PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    CAS  PubMed  Google Scholar 

  • Laurencin C, Khan Y, El-Amin SF (2006) Bone graft substitutes. Expert Rev Med Devices 3(1):49–57

    CAS  PubMed  Google Scholar 

  • Lee KW et al (2007) Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 8(4):1077–1084

    CAS  PubMed  Google Scholar 

  • Lee SJ et al (2008) Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed Microdevices 10(2):233–241

    CAS  PubMed  Google Scholar 

  • Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW (2014) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103

    PubMed  Google Scholar 

  • Letic-Gavrilovic A, Todorovic L, Abe K (2004) Oral tissue engineering of complex tooth structures on biodegradable DLPLG/beta-TCP scaffolds. Adv Exp Med Biol 553:267–281

    CAS  PubMed  Google Scholar 

  • Li MG, Tian XY, Chen XB (2009) A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: role of modeling on scaffold properties prediction. Biofabrication 1(3):032001

    CAS  PubMed  Google Scholar 

  • Liao E et al (2007) Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. Tissue Eng 13(3):537–550

    CAS  PubMed  Google Scholar 

  • Lima JMC (2014) Removable partial dentures: use of rapid prototyping. J Prosthodont 23(7):588–591

    PubMed  Google Scholar 

  • Limpanuphap S, Derby B (2002) Manufacture of biomaterials by a novel printing process. J Mater Sci Mater Med 13(12):1163–1166

    CAS  PubMed  Google Scholar 

  • Lin H et al (2013) Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34(2):331–339

    PubMed Central  CAS  PubMed  Google Scholar 

  • Linzhong, Z et al (2010) The research of technique on fabricating hydrogel scaffolds for cartilage tissue engineering based on stereo-lithography. In: 2010 International Conference on Digital Manufacturing and Automation (ICDMA), vol 2. IEEE, 2010

    Google Scholar 

  • Liu Y et al (2010) In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology. Biomaterials 31(8):2176–2183

    CAS  PubMed  Google Scholar 

  • Lu L et al (2001) Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop Relat Res 391(Suppl):S251–S270.

    Google Scholar 

  • Martinez-Diaz S et al (2010) In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits. Am J Sports Med 38(3):509–519

    PubMed  Google Scholar 

  • Melchels FP, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130

    CAS  PubMed  Google Scholar 

  • Melchels FP, Domingos MA, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104

    CAS  Google Scholar 

  • Miller ED et al (2006) Dose-dependent cell growth in response to concentration modulated patterns of FGF-2 printed on fibrin. Biomaterials 27(10):2213–2221

    CAS  PubMed  Google Scholar 

  • Mironov V, Reis N, Derby B (2006) Review: bioprinting: a beginning. Tissue Eng 12(4):631–634

    PubMed  Google Scholar 

  • Mironov V et al (2008) Organ printing: promises and challenges. Regen Med 3(1):93–103

    CAS  PubMed  Google Scholar 

  • Mironov V et al (2009a) Biofabrication: a 21st century manufacturing paradigm. Biofabrication 1(2):022001

    CAS  PubMed  Google Scholar 

  • Mironov V et al (2009b) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174

    PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy SV, Skardal A, Atala A (2013) Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res A 101(1):272–284

    PubMed  Google Scholar 

  • Murugan R, Ramakrishna S (2006) Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng 12(3):435–447

    CAS  PubMed  Google Scholar 

  • Nakahara T (2011) Potential feasibility of dental stem cells for regenerative therapies: stem cell transplantation and whole-tooth engineering. Odontology 99(2):105–111

    PubMed  Google Scholar 

  • Nakamura M et al (2010) Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2(1):014110

    CAS  PubMed  Google Scholar 

  • Nandi SK et al (2010) Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res 132:15–30

    CAS  PubMed  Google Scholar 

  • Nishiyama Y et al (2009) Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J Biomech Eng 131(3):035001

    PubMed  Google Scholar 

  • Ohara T et al (2010) Evaluation of scaffold materials for tooth tissue engineering. J Biomed Mater Res A 94(3):800–805

    PubMed  Google Scholar 

  • O’Keefe RJ, Mao J (2011) Bone tissue engineering and regeneration: from discovery to the clinic – an overview. Tissue Eng Part B Rev 17(6):389–392

    PubMed Central  PubMed  Google Scholar 

  • Park CH et al (2010) Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials 31(23):5945–5952

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park JY et al (2014) A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication 6(3):035004

    PubMed  Google Scholar 

  • Peltola SM et al (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40(4):268–280

    CAS  PubMed  Google Scholar 

  • Peng L, Ye L, Zhou XD (2009) Mesenchymal stem cells and tooth engineering. Int J Oral Sci 1(1):6–12

    PubMed Central  PubMed  Google Scholar 

  • Phillippi JA et al (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26(1):127–134

    CAS  PubMed  Google Scholar 

  • Pryor LS et al (2009) Review of bone substitutes. Craniomaxillofac Trauma Reconstr 2(3):151–160

    PubMed Central  PubMed  Google Scholar 

  • Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26(8):434–441

    CAS  PubMed  Google Scholar 

  • Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39; discussion 39–40

    CAS  PubMed  Google Scholar 

  • Schuller-Ravoo S et al (2013) Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins. Macromol Biosci 13(12):1711–1719

    PubMed  Google Scholar 

  • Seck TM et al (2010) Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D, L-lactide)-based resins. J Control Release 148(1):34–41

    CAS  PubMed  Google Scholar 

  • Sharma S et al (2014) Biomaterials in tooth tissue engineering: a review. J Clin Diagn Res 8(1):309–315

    PubMed Central  PubMed  Google Scholar 

  • Shim JH, Lee JS, Kim JY, Cho DW (2012) Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 22(8):085014

    Google Scholar 

  • Shin H et al (2005) Osteogenic differentiation of rat bone marrow stromal cells cultured on Arg-Gly-Asp modified hydrogels without dexamethasone and beta-glycerol phosphate. Biomaterials 26(17):3645–3654

    CAS  PubMed  Google Scholar 

  • Shrivats AR, McDermott MC, Hollinger JO (2014) Bone tissue engineering: state of the union. Drug Discov Today 19(6):781–786

    CAS  PubMed  Google Scholar 

  • Shuai C et al (2013) Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering. Biofabrication 5(1):015014

    PubMed  Google Scholar 

  • Smith CM et al (2007) Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Eng 13(2):373–383

    CAS  PubMed  Google Scholar 

  • Soares PV et al (2013) Rapid prototyping and 3D-virtual models for operative dentistry education in Brazil. J Dent Educ 77(3):358–363

    PubMed  Google Scholar 

  • Stevens B et al (2008) A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res B Appl Biomater 85(2):573–582

    PubMed  Google Scholar 

  • Stringer J, Derby B (2010) Formation and stability of lines produced by inkjet printing. Langmuir 26(12):10365–10372

    CAS  PubMed  Google Scholar 

  • Tarafder S et al (2013) Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med 7(8):631–641

    PubMed Central  CAS  PubMed  Google Scholar 

  • Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    CAS  PubMed  Google Scholar 

  • Temple JP et al (2014) Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-Printed PCL scaffolds. J Biomed Mater Res A 102(12):4317–4325

    Google Scholar 

  • Triche R, Mandelbaum BR (2013) Overview of cartilage biology and new trends in cartilage stimulation. Foot Ankle Clin 18(1):1–12

    PubMed  Google Scholar 

  • Trojani C et al (2006) Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 27(17):3256–3264

    CAS  PubMed  Google Scholar 

  • Ueda M (2003) Regeneration of tooth and periodontal tissue using tissue engineering concepts. Nihon Rinsho 61(3):439–447

    PubMed  Google Scholar 

  • Ulrich-Vinther M et al (2003) Articular cartilage biology. J Am Acad Orthop Surg 11(6):421–430

    PubMed  Google Scholar 

  • Umlauf D et al (2010) Cartilage biology, pathology, and repair. Cell Mol Life Sci 67(24):4197–4211

    CAS  PubMed  Google Scholar 

  • Vaezi M, Chianrabutra S, Mellor B, Yang S (2013) Multiple material additive manufacturing–Part 1: a review: this review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials. Virtual Phys Prototyp 8(1):19–50

    Google Scholar 

  • Visconti RP et al (2010) Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 10(3):409–420

    PubMed Central  PubMed  Google Scholar 

  • Wagoner Johnson AJ, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7(1):16–30

    CAS  PubMed  Google Scholar 

  • Williams JM et al (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    CAS  PubMed  Google Scholar 

  • Wilson WC Jr, Boland T (2003) Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol 272(2):491–496

    PubMed  Google Scholar 

  • Xia Y et al (2013) Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomedicine 8:4197–4213

    PubMed Central  PubMed  Google Scholar 

  • Xu T et al (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93–99

    PubMed  Google Scholar 

  • Xu WP et al (2008) Accurately shaped tooth bud cell-derived mineralized tissue formation on silk scaffolds. Tissue Eng Part A 14(4):549–557

    CAS  PubMed  Google Scholar 

  • Xu T et al (2013) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5(1):015001

    PubMed  Google Scholar 

  • Yang S et al (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689

    CAS  PubMed  Google Scholar 

  • Yang S et al (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8(1):1–11

    CAS  PubMed  Google Scholar 

  • Ye K et al (2014) Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D-printed chitosan scaffold. PLoS One 9(6):e99410

    Google Scholar 

  • Yen AH, Sharpe PT (2008) Stem cells and tooth tissue engineering. Cell Tissue Res 331(1):359–372

    CAS  PubMed  Google Scholar 

  • Young CS et al (2002) Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 81(10):695–700

    CAS  PubMed  Google Scholar 

  • Zhang L et al (2009) Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering. Biomaterials 30(7):1309–1320

    CAS  PubMed  Google Scholar 

  • Zhang W et al (2014) Cartilage repair and subchondral bone reconstruction based on three-dimensional printing technique. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 28(3):318–324

    PubMed  Google Scholar 

  • Zheng L et al (2011) The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Biomaterials 32(29):7053–7059

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Atala M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jeong, C.G., Atala, A. (2015). 3D Printing and Biofabrication for Load Bearing Tissue Engineering. In: Bertassoni, L., Coelho, P. (eds) Engineering Mineralized and Load Bearing Tissues. Advances in Experimental Medicine and Biology, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-22345-2_1

Download citation

Publish with us

Policies and ethics