Skip to main content

Pathobiology of Hepatitis B Virus-Induced Carcinogenesis

  • Chapter
Hepatitis B Virus in Human Diseases

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Hepatitis B virus (HBV) contributes to hepatocellular carcinoma (HCC) development through direct and indirect mechanisms. HBV DNA integration into the host genome occurs at early steps of clonal tumor expansion and induces both genomic instability and direct insertional mutagenesis of diverse cancer-related genes. Prolonged expression of the viral regulatory protein HBx and/or altered versions of the PreS/S envelope proteins deregulates cell transcription and proliferation control and sensitizes liver cells to carcinogenic factors. Accumulation of preS1 large envelope proteins and/or preS2/S mutant proteins activates the unfold proteins response (UPR) that can contribute to hepatocyte transformation. Epigenetic changes targeting the expression of tumor-suppressor genes occur early in the development of HCC. A major role is played by HBx that is recruited on cellular chromatin and modulates chromatin dynamics at specific gene loci. Compared with tumors associated with other risk factors, HBV-related tumors have a higher rate of chromosomal alterations, p53 inactivation by mutations and overexpression of fetal liver/hepatic progenitor cells genes. The wnt/β-catenin pathway is also often activated but HBV-related tumors display a low rate of activating β-catenin mutations. HBV-related HCCs may arise on non-cirrhotic livers, further supporting the notion that HBV plays a direct role in liver transformation by triggering both common and etiology-specific oncogenic pathways in addition to stimulating the host immune response and driving liver chronic necro-inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.

    CAS  PubMed  Google Scholar 

  2. Venook AP, Papandreou C, Furuse J, de Guevara LL. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist. 2010;15 Suppl 4:5–13.

    PubMed  Google Scholar 

  3. Cancer IARC. Globocan. Estimated cancer incidence, mortality and prevalence worldwide in 2012. World Health Organization; 2012: 9, http://globocan iarc fr/Pages/fact_sheets_cancer aspx Accessed 2015.

    Google Scholar 

  4. Guerrieri F, Belloni L, Pediconi N, Levrero M. Molecular mechanisms of HBV-associated hepatocarcinogenesis. Semin Liver Dis. 2013;33:147–56.

    CAS  PubMed  Google Scholar 

  5. McGivern DR, Lemon SM. Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene. 2011;30:1969.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Moeini A, Cornellà H, Villanueva A. Emerging signaling pathways in hepatocellular carcinoma. Liver Cancer. 2012;1:83–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Nault JC, Zucman-Rossi J. Building a bridge between obesity, inflammation and liver carcinogenesis. J Hepatol. 2010;53:777–9.

    PubMed  Google Scholar 

  8. Nault JC, Zucman-Rossi J. Genetics of hepatocellular carcinoma: the next generation. J Hepatol. 2014;60:224–6.

    CAS  PubMed  Google Scholar 

  9. Villanueva A, Minguez B, Forner A, et al. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy. Annu Rev Med. 2010;61:317–28.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Villanueva A, Llovet JM. Targeted therapies for hepatocellular carcinoma. Gastroenterology. 2011;140:1410–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004;127(5 Suppl 1):S35–50.

    PubMed  Google Scholar 

  12. Raimondo G, Allain JP, Brunetto MR, et al. Statements from the Taormina expert meeting on occult hepatitis B virus infection. J Hepatol. 2008;49:652–7.

    PubMed  Google Scholar 

  13. Ahn SH, Park YN, Park JY, et al. Long-term clinical and histological outcomes in patients with spontaneous hepatitis B surface antigen seroclearance. J Hepatol. 2005;42:188–94.

    CAS  PubMed  Google Scholar 

  14. Chen CJ, Yang HI, Su J, REVEAL-HBV Study Group, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA. 2006;295:65–73.

    CAS  PubMed  Google Scholar 

  15. Di Bisceglie AM. Hepatitis B and hepatocellular carcinoma. Hepatology. 2009;49:S56–60.

    PubMed Central  PubMed  Google Scholar 

  16. Pollicino T, Squadrito G, Cerenzia G, et al. Hepatitis B virus maintains its pro-oncogenic properties in the case of occult HBV infection. Gastroenterology. 2004;126(1):102–10.

    CAS  PubMed  Google Scholar 

  17. Raimondo G, Pollicino T, Squadrito G. What is the clinical impact of occult hepatitis B virus infection. Lancet. 2005;365:638–40.

    PubMed  Google Scholar 

  18. Sherman M. Risk of hepatocellular carcinoma in hepatitis B and prevention through treatment. Cleve Clin J Med. 2009;76:S6–9.

    PubMed  Google Scholar 

  19. Wang SH, Yeh SH, Lin WH, et al. Estrogen receptor a represses transcription of HBV genes via interaction with hepatocyte nuclear factor 4a. Gastroenterology. 2012;142(4):989–98.

    CAS  PubMed  Google Scholar 

  20. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317(5834):121–4.

    CAS  PubMed  Google Scholar 

  21. Donato F, Tagger A, Gelatti U, et al. Alcohol and hepatocellular carcinoma: the effect of lifetime intake and hepatitis virus infections in men and women. Am J Epidemiol. 2002;155:323–31.

    CAS  PubMed  Google Scholar 

  22. Ming L, Thorgeirsson S, Gail MH, et al. Dominant role of hepatitis B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong, China. Hepatology. 2002;36:1214–20.

    CAS  PubMed  Google Scholar 

  23. Pollicino T, Vegetti A, Saitta C, et al. Hepatitis B virus DNA integration in tumour tissue of a non-cirrhotic HFE-haemochromatosis patient with hepatocellular carcinoma. J Hepatol. 2013;58:190–3.

    CAS  PubMed  Google Scholar 

  24. Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology. 2015;479-480C:672–86.

    Google Scholar 

  25. Bock CT, Schwinn S, Locarnini S, Fyfe J, Manns MP, Trautwein C, Zentgraf H. Structural organization of the hepatitis B virus minichromosome. J Mol Biol. 2001;307:183–96.

    CAS  PubMed  Google Scholar 

  26. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009;51:581–92.

    CAS  PubMed  Google Scholar 

  27. Pollicino T, Belloni L, Raffa G, et al. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology. 2006;130:823–37.

    CAS  PubMed  Google Scholar 

  28. Nassal M. Hepatitis B viruses: reverse transcription a different way. Virus Res. 2008;13:235–49.

    Google Scholar 

  29. Belloni L, Pollicino T, De Nicola F, et al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc Natl Acad Sci U S A. 2009;106:19975–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Benhenda S, Ducroux A, Rivière L, Sobhian B, Ward MD, Dion S, Hantz O, Protzer U, Michel ML, Benkirane M, et al. Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription. J Virol. 2013;87(8):4360–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Cougot D, Allemand E, Rivière L, et al. Inhibition of PP1 phosphatase activity by HBx: a mechanism for the activation of hepatitis B virus transcription. Sci Signal. 2012;5(205):ra1.

    PubMed  Google Scholar 

  32. Bouchard MJ, Navas-Martin S. Hepatitis B and C virus hepatocarcinogenesis: lessons learned and future challenges. Cancer Lett. 2011;305.

    Google Scholar 

  33. EASL clinical practice guidelines: management of CHB. J Hepatol 2009; 50: 227–42.

    Google Scholar 

  34. Papatheodoridis GV, Lampertico P, Manolakopoulos S, Lok A. Incidence of hepatocellular carcinoma in chronic hepatitis B patients receiving nucleos(t)ide therapy: a systematic review. J Hepatol. 2010;53:348–56.

    CAS  PubMed  Google Scholar 

  35. Chan HL, Hui AY, Wong ML, Tse AM, Hung LC, Wong VW, et al. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut. 2004;53:1494–8.

    PubMed Central  PubMed  Google Scholar 

  36. Zoulim F, Locarnini S. Hepatitis B virus resistance to nucleos(t)ide analogues. Gastroenterology. 2009;137:1593–608.

    CAS  PubMed  Google Scholar 

  37. Locarnini S, McMillan J, Bartholomeusz A. The hepatitis B virus and common mutants. Semin Liver Dis. 2003;23:5–20.

    CAS  PubMed  Google Scholar 

  38. Kuang SY, Jackson PE, Wang JB, et al. Specific mutations of hepatitis B virus in plasma predict liver cancer development. Proc Natl Acad Sci U S A. 2004;101:3575–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Chen BF, Liu CJ, Jow GM, Chen PJ, Kao JH, Chen DS. High prevalence and mapping of pre-S deletion in hepatitis B virus carriers with progressive liver diseases. Gastroenterology. 2006;130:1153–68.

    CAS  PubMed  Google Scholar 

  40. Choi MS, Kim DY, Lee DH, Lee JH, Koh KC, Paik SW, et al. Clinical significance of pre-S mutations in patients with genotype C hepatitis B virus infection. J Viral Hepat. 2007;14:161–8.

    CAS  PubMed  Google Scholar 

  41. Fan YF, Lu CC, Chen WC, Yao WJ, Wang HC, Chang TT, et al. Prevalence and significance of hepatitis B virus (HBV) pre-S mutants in serum and liver at different replicative stages of chronic HBV infection. Hepatology. 2001;33:277–86.

    CAS  PubMed  Google Scholar 

  42. Pollicino T, Campo S, Raimondo G. PreS and core gene heterogeneity in hepatitis B virus (HBV) genomes isolated from patients with long-lasting HBV chronic infection. Virology. 1995;208:672–7.

    CAS  PubMed  Google Scholar 

  43. Santantonio T, Jung MC, Schneider R, Fernholz D, Milella M, Monno L, et al. Hepatitis B virus genomes that cannot synthesize pre-S2 proteins occur frequently and as dominant virus populations in chronic carriers in Italy. Virology. 1992;188:948–52.

    CAS  PubMed  Google Scholar 

  44. Zhang D, Dong P, Zhang K, Deng L, Bach C, Chen W, et al. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment. BMC Microbiol. 2012;12:307.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Chen CH, Hung CH, Lee CM, Hu TH, Wang JH, Wang JC, et al. Pre-S deletion and complex mutations of hepatitis B virus related to advanced liver disease in HBeAg-negative patients. Gastroenterology. 2007;133:1466–74.

    CAS  PubMed  Google Scholar 

  46. Chen CH, Changchien CS, Lee CM, Hung CH, Hu TH, Wang JH, et al. Combined mutations in pre-s/surface and core promoter/precore regions of hepatitis B virus increase the risk of hepatocellular carcinoma: a casecontrol study. J Infect Dis. 2008;198:1634–42.

    CAS  PubMed  Google Scholar 

  47. Huang HP, Hsu HY, Chen CL, Ni YH, Wang HY, Tsuei DJ, et al. Pre-S2 deletions of hepatitis B virus and hepatocellular carcinoma in children. Pediatr Res. 2010;67:90–4.

    CAS  PubMed  Google Scholar 

  48. Wang HC, Huang W, Lai MD, Su IJ. Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci. 2006;97:683–8.

    CAS  PubMed  Google Scholar 

  49. Yeung P, Wong DK, Lai CL, Fung J, Seto WK, Yuen MF. Association of hepatitis B virus pre-S deletions with the development of hepatocellular carcinoma in chronic hepatitis B. J Infect Dis. 2011;203:646–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Zhong S, Chan JY, Yeo W, Tam JS, Johnson PJ. Hepatitis B envelope protein mutants in human hepatocellular carcinoma tissues. J Viral Hepat. 1999;6:195–202.

    CAS  PubMed  Google Scholar 

  51. Liu S, Zhang H, Gu C, Yin J, He Y, Xie J, et al. Associations between hepatitis B virus mutations and the risk of hepatocellular carcinoma: a meta-analysis. J Natl Cancer Inst. 2009;101:1066–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Kay A, Zoulim F. Hepatitis B virus genetic variability and evolution. Virus Res. 2007;127:164–76.

    CAS  PubMed  Google Scholar 

  53. Pollicino T, Saitta C, Raimondo G. Hepatocellular carcinoma: the point ofview of the hepatitis B virus. Carcinogenesis. 2011;32:1122–32.

    CAS  PubMed  Google Scholar 

  54. Locarnini S, Zoulim F. Molecular genetics of HBV infection. Antivir Ther. 2010;15:3–14.

    CAS  PubMed  Google Scholar 

  55. Bock CT, Tillmann HL, Manns MP, Trautwein C. The pre-S region determines the intracellular localization and appearance of hepatitis B virus. Hepatology. 1999;30:517–25.

    CAS  PubMed  Google Scholar 

  56. Bruss V. Revisiting the cytopathic effect of hepatitis B virus infection. Hepatology. 2002;36:1327–9.

    CAS  PubMed  Google Scholar 

  57. Chisari FV, Filippi P, McLachlan A, Milich DR, Riggs M, Lee S, et al. Expression of hepatitis B virus large envelope polypeptide inhibits hepatitis B surface antigen secretion in transgenic mice. J Virol. 1986;60:880–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Chisari FV, Filippi P, Buras J, McLachlan A, Popper H, Pinkert CA, et al. Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice. Proc Natl Acad Sci U S A. 1987;84:6909–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Chisari FV, Klopchin K, Moriyama T, et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell. 1989;59:1145–56.

    CAS  PubMed  Google Scholar 

  60. Mathai AM, Alexander J, Kuo FY, Torbenson M, Swanson PE, Yeh MM. Type II ground-glass hepatocytes as a marker of hepatocellular carcinoma in chronic hepatitis B. Hum Pathol. 2013;44:1665–71.

    CAS  PubMed  Google Scholar 

  61. Wang HC, Chang WT, Chang WW, Wu HC, Huang W, Lei HY, et al. Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology. 2005;41:761–70.

    PubMed  Google Scholar 

  62. Hagen TM, Huang S, Curnutte J, Fowler P, Martinez V, Wehr CM, et al. Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc Natl Acad Sci U S A. 1994;91:12808–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Hsieh YH, Su IJ, Wang HC, Chang WW, Lei HY, Lai MD, et al. Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis. 2004;25:2023–32.

    CAS  PubMed  Google Scholar 

  64. Hsieh YH, Su IJ, Wang HC, Tsai JH, Huang YJ, Chang WW, et al. Hepatitis B virus pre-S2 mutant surface antigen induces degradation of cyclin-dependent kinase inhibitor p27Kip1 through c-Jun activation domain-binding protein 1. Mol Cancer Res. 2007;5:1063–72.

    CAS  PubMed  Google Scholar 

  65. Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, Chang WT, et al. Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp 38 mitogen-activated protein kinase. J Biol Chem. 2004;279:46384–92.

    CAS  PubMed  Google Scholar 

  66. Wang LH, Huang W, Lai MD, Su IJ. Aberrant cyclin A expression and centrosome overduplication induced by hepatitis B virus pre-S2 mutants and its implication in hepatocarcinogenesis. Carcinogenesis. 2012;33:466–72.

    PubMed  Google Scholar 

  67. Lai MW, Yeh CT. The oncogenic potential of hepatitis B virus rtA181T/ surface truncation mutant. Antivir Ther. 2008;13:875–9.

    CAS  PubMed  Google Scholar 

  68. Lai MW, Huang SF, Hsu CW, Chang MH, Liaw YF, Yeh CT. Identification of nonsense mutations in hepatitis B virus S gene in patients with hepatocellular carcinoma developed after lamivudine therapy. Antivir Ther. 2009;14:249–61.

    CAS  PubMed  Google Scholar 

  69. Lee SA, Kim K, Kim H, Kim BJ. Nucleotide change of codon 182 in the surface gene of hepatitis B virus genotype C leading to truncated surface protein is associated with progression of liver diseases. J Hepatol. 2012;56:63–9.

    CAS  PubMed  Google Scholar 

  70. Yeh CT. Development of HBV S gene mutants in chronic hepatitis B patients receiving nucleotide/nucleoside analogue therapy. Antivir Ther. 2010;15:471–5.

    CAS  PubMed  Google Scholar 

  71. Warner N, Locarnini S. The antiviral drug selected hepatitis B virus rtA181T/sW172* mutant has a dominant negative secretion defect and alters the typical profile of viral rebound. Hepatology. 2008;48:88–98.

    CAS  PubMed  Google Scholar 

  72. Yeh CT, Chen T, Hsu CW, Chen YC, Lai MW, Liang KH, Chen TC. Emergence of the rtA181T/sW172* mutant increased the risk of hepatoma occurrence in patients with lamivudine-resistant chronic hepatitis B. BMC Cancer. 2011;21:398.

    Google Scholar 

  73. Hoshida Y, Moeini A, Alsinet C, Kojima K, Villanueva A. Gene signatures in the management of hepatocellular carcinoma. Semin Oncol. 2012;39:473–85.

    CAS  PubMed  Google Scholar 

  74. Nault JC, Zucman-Rossi J. Genetics of hepatobiliary carcinogenesis. Semin Liver Dis. 2011;31:173–87.

    CAS  PubMed  Google Scholar 

  75. Sia D, Villanueva A. Signaling pathways in hepatocellular carcinoma. Oncology. 2011;81(S1):18–23.

    CAS  PubMed  Google Scholar 

  76. Nahon P, Zucman-Rossi J. Single nucleotide polymorphisms and risk of hepatocellular carcinoma in cirrhosis. J Hepatol. 2012;57(3):663–74.

    CAS  PubMed  Google Scholar 

  77. Chan LK, Ko FC, Sze KM, et al. Nuclear-targeted deleted in liver cancer 1 (DLC1) is less efficient in exerting its tumor suppressive activity both in vitro and in vivo. PLoS One. 2011;6(9), e25547.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Gu X, Qi P, Zhou F, et al. 149G > A polymorphism in the cytotoxic T-lymphocyte antigen-4 gene increases susceptibility to hepatitis B-related hepatocellular carcinoma in a male Chinese population. Hum Immunol. 2010;71(1):83–7.

    CAS  PubMed  Google Scholar 

  79. Zhang H, Zhai Y, Hu Z, et al. Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat Genet. 2010;42(9):755–8.

    CAS  PubMed  Google Scholar 

  80. Laurent-Puig P, Legoix P, Bluteau O, et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology. 2001;120:1763–73.

    CAS  PubMed  Google Scholar 

  81. Guichard C, Amaddeo G, Imbeaud S, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44:694–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Schulze K, Imbeaud S, Letouzé E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47(5):505–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Boyault S, Rickman DS, de Reyni’es A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45:42–52.

    CAS  PubMed  Google Scholar 

  84. Amaddeo G, Cao Q, Ladeiro Y, et al. Integration of tumour and viral genomic characterisations in HBV-related hepatocellular carcinomas. Gut. 2015;64(5):820–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Imbeaud S, Ladeiro Y, Zucman-Rossi J. Identification of novel oncogenes and tumor suppressors in hepatocellular carcinoma. Semin Liver Dis. 2010;30:75–86.

    CAS  PubMed  Google Scholar 

  86. Ura S, Honda M, Yamashita T, et al. Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology. 2009;49:1098–112.

    CAS  PubMed  Google Scholar 

  87. Zhang X, Liu S, Hu T, et al. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology. 2009;50:490–9.

    CAS  PubMed  Google Scholar 

  88. Wang Y, Lu Y, Toh ST, et al. Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol. 2010;53:57–66.

    CAS  PubMed  Google Scholar 

  89. Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2010;52:60–70.

    CAS  PubMed  Google Scholar 

  90. Lee S, Lee HJ, Kim JH, Lee HS, Jang JJ, Kang GH. Aberrant CpG island hyper-methylation along multistep hepatocarcinogenesis. Am J Pathol. 2003;163:1371–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Calvisi DF, Ladu S, Gorden A, et al. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest. 2007;117:2713–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Zhao J, Wu G, Bu F, et al. Epigenetic silence of ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region- containing protein 1 (ASPP1) and ASPP2 genes promotes tumor growth in hepatitis B virus-positive hepatocellular carcinoma. Hepatology. 2010;51:142–53.

    CAS  PubMed  Google Scholar 

  93. Villanueva A, Portela A, Sayols S, et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology. 2015, 61:1945–56.

    Google Scholar 

  94. Wu LM. Yang Z, Zhou L, et al: Identification of histone deacetylase 3 as a biomarker for tumor recurrence following liver transplantation in HBV-associated hepatocellular carcinoma. PLoS ONE. 2010;5, e14460.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Lachenmayer A, Toffanin S, Cabellos L, et al. Combination therapy for hepatocellular carcinoma: additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib. J Hepatol. 2012;56:1343–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Bachmann IM, Halvorsen OJ, Collett K, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006;24:268–73.

    CAS  PubMed  Google Scholar 

  97. Kleer CG, Cao Q, Varambally S, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. PNAS USA. 2003;100:11606–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra A, Diaz E, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492:108–12.

    CAS  PubMed  Google Scholar 

  99. Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42:181–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Nikoloski G, Langemeijer SM, Kuiper RP, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42:665–7.

    CAS  PubMed  Google Scholar 

  101. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res. 2008;64721–9.

    Google Scholar 

  102. Sneeringer CJ, Scott MP, Kuntz KW, et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hyper-trimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. PNAS USA. 2010;107:20980–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Yap DB, Chu J, Berg T, et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood. 2011;117:2451–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Cai MY, Tong ZT, Zheng F, et al. EZH2 protein: a promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies. Gut. 2011;60:967.

    CAS  PubMed  Google Scholar 

  105. Sasaki M, Ikeda H, Itatsu K, et al. The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest. 2008;88:873.

    CAS  PubMed  Google Scholar 

  106. Chen Y, Lin MC, Yao H, et al. Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through downregulation of stathmin. Hepatology. 2007;46:200.

    CAS  PubMed  Google Scholar 

  107. Yang F, Zhang L, Huo XS, et al. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology. 2011;54:1679.

    CAS  PubMed  Google Scholar 

  108. Cheng AS, Lau SS, Chen Y, et al. EZH2-mediated concordant repression of Wnt antagonists promotes β-catenin dependent hepato-carcinogenesis. Cancer Res. 2011;71:4028.

    CAS  PubMed  Google Scholar 

  109. Wang WH, Studach LL, Andrisani OM. Proteins ZNF198 and SUZ12 are down-regulated in hepatitis B virus (HBV) X protein-mediated hepatocyte transformation and in HBV replication. Hepatology. 2011;53:1137–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Studach LL, Menne S, Cairo S, et al. Subset of Suz12/PRC2 target genes is activated during hepatitis B virus replication and liver carcinogenesis associated with HBV X protein. Hepatology. 2012;56:1240–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Fujimoto A, Totoki Y, Abe T, et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 2012;44:760–4.

    CAS  PubMed  Google Scholar 

  112. Li M, Zhao H, Zhang X, et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet. 2011;43:828–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Sung WK, Zheng H, Li S, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet. 2012;44:765–9.

    CAS  PubMed  Google Scholar 

  114. Guan B, Wang TL, Shih IM, et al. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 2011;71:6718–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Jones S, Wang TL, Shih Ie M, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330:228–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Jones S, Li M, Parsons DW, et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat. 2012;33:100–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Wiegand KC, Shah SP, Al-Agha OM, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363:1532–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  119. Aoki H, Kajino K, Arakawa Y, Hino O. Molecular cloning of a rat chromosome putative recombinogenic sequence homologous to the hepatitis B virus encapsidation signal. Proc Natl Acad Sci U S A. 1996;93:7300–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Ferber MJ, Montoya DP, Yu C, et al. Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene. 2003;22:3813–20.

    CAS  PubMed  Google Scholar 

  121. Gozuacik I, Murakami Y, Saigo K, et al. Identification of human cancer-related genes by naturally occurring Hepatitis B virus DNA tagging. Oncogene. 2001;20:6233–40.

    CAS  PubMed  Google Scholar 

  122. Murakami Y, Saigo K, Takashima H, et al. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut. 2005;54:1162–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Paterlini-Brechot P, Saigo K, Murakami Y, et al. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene. 2003;22:3911–6.

    CAS  PubMed  Google Scholar 

  124. Lau CC, Sun T, Ching AK, et al. Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell. 2014;25:335–49.

    CAS  PubMed  Google Scholar 

  125. Cao Q, Imbeaud S, Datta S, Zucman-Rossi J. Authors’ response: virus-host interactions in HBV-related hepatocellular carcinoma: more to be revealed? Gut. 2015;64(5):853–4.

    PubMed  Google Scholar 

  126. Terradillos O, Billet O, Renard CA, et al. The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice. Oncogene. 1997;14:395–404.

    CAS  PubMed  Google Scholar 

  127. Lucifora J, Arzberger S, Durantel D, et al. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J Hepatol. 2011;55:996–1003.

    CAS  PubMed  Google Scholar 

  128. Ducroux A, Benhenda S, Rivière L, et al. The Tudor domain protein Spindlin1 is involved in intrinsic antiviral defense against incoming hepatitis B Virus and herpes simplex virus type 1. PLoS Pathog. 2014;10(9), e1004343.

    PubMed Central  PubMed  Google Scholar 

  129. Wei X, Xiang T, Ren G, Tan C, et al. miR-101 is down-regulated by the hepatitis B virus x protein and induces aberrant DNA methylation by targeting DNA methyltransferase 3A. Cell Signal. 2013;25(2):439–46.

    CAS  PubMed  Google Scholar 

  130. Huang HC, Chen CC, Chang WC, et al. Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J Virol. 2012;86(17):9443–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Macovei A, Petrareanu C, Lazar C, et al. Regulation of hepatitis B virus infection by Rab5, Rab7, and the endolysosomal compartment. J Virol. 2013;87(11):6415–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Sir D, Tian Y, Chen WL, Ann DK, et al. The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication. Proc Natl Acad Sci U S A. 2010;107(9):4383–8.

    PubMed Central  PubMed  Google Scholar 

  133. Hodgson AJ, Hyser JM, Keasler VV, et al. Hepatitis B virus regulatory HBx protein binding to DDB1 is required but is not sufficient for maximal HBV replication. Virology. 2012;426(1):73–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Yang B, Bouchard MJ. The hepatitis B virus X protein elevates cytosolic calcium signals by modulating mitochondrial calcium uptake. J Virol. 2012;86:313–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Guerrieri F, Belloni L, D’Andrea D. Genome-wide identification of direct HBx targets that control HBV replication. Gastroenterology. 2015; submitted.

    Google Scholar 

  136. Cougot D, Wu Y, Cairo S, et al. The hepatitis B virus X protein functionally interacts with CREB-binding protein/p300 in the regulation of CREB-mediated transcription. J Biol Chem. 2007;282:4277–87.

    CAS  PubMed  Google Scholar 

  137. Park IY, Sohn BH, Yu E, et al. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology. 2007;132:1476–94.

    CAS  PubMed  Google Scholar 

  138. Zheng DL, Zhang L, Cheng N, et al. Epigenetic modification induced by hepatitis B virus X protein via interaction with de novo DNA methyltransferase DNMT3A. J Hepatol. 2009;50:377–87.

    CAS  PubMed  Google Scholar 

  139. Zhang H, Diab A, Fan H et al. PLK1 and HOTAIR accelerate proteasomal degradation of SUZ12 and ZNF198 during hepatitis B virus-induced liver carcinogenesis. Cancer Res. 2015;75:2363–74.

    Google Scholar 

  140. Fan H, Zhang H, Pascuzzi PE, Andrisani O. Hepatitis B virus X protein induces EpCAM expression via active DNA demethylation directed by RelA in complex with EZH2 and TET2. Oncogene. 2015 Apr 20. doi: 10.1038/onc.2015.122.

    Google Scholar 

  141. Clippinger AJ, Bouchard MJ. Hepatitis B virus HBx protein localizes to mitochondria in primary rat hepatocytes and modulates mitochondrial membrane potential. J Virol. 2008;82:6798–811.

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Cho HK, Cheong KJ, Kim HY, Cheong J. Endoplasmic reticulum stress induced by hepatitis B virus X protein enhances cyclo-oxygenase 2 expression via activating transcription factor 4. Biochem J. 2011;435:431–9.

    CAS  PubMed  Google Scholar 

  143. Li J, Liu Y, Wang Z, et al. Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. J Virol. 2011;85:6319–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Pan J, Lian Z, Wallett S, Feitelson MA. The hepatitis B x antigen effector, URG7, blocks tumour necrosis factor α-mediated apoptosis by activation of phosphoinositol 3-kinase and β-catenin. J Gen Virol. 2007;88:3275–85.

    CAS  PubMed  Google Scholar 

  145. Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement survival: implications indevelopment and cancer. Development. 2005;132:3151–61.

    CAS  PubMed  Google Scholar 

  146. Castilla A, Prieto J, Fausto N. Transforming growth factors β 1 and α in chronic liver disease. Effects of interferon alfa therapy. N Engl J Med. 1991;324:933–40.

    CAS  PubMed  Google Scholar 

  147. van Zijl F, Zulehner G, Petz M, et al. Epithelial-mesenchymal transition in hepatocellular carcinoma. Future Oncol. 2009;6:1169–79.

    Google Scholar 

  148. Yoo YD, Ueda H, Park K, et al. Regulation of transforming growth factor-β 1 expression by the hepatitis B virus (HBV) X transactivator. Role in HBV pathogenesis. J Clin Invest. 1996;97:388–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Lee DK, Park SH, Yi Y, et al. The hepatitis B virus encoded oncoprotein pX amplifies TGF-β family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev. 2001;15:455–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial-to-mesenchymal transition. Cell Res. 2009;19:156–72.

    CAS  PubMed  Google Scholar 

  151. Benzoubir N, Lejamtel C, Battaglia S, et al. HCV core-mediated activation of latent TGF-β via thrombospondin drives the cross-talk between hepatocytes and stromal environment. J Hepatol. 2013;59(6):1160–8.

    CAS  PubMed  Google Scholar 

  152. Battaglia S, Benzoubir N, Nobilet S, et al. Liver cancer-derived hepatitis C virus core proteins shift TGF-β responses from tumor suppression to epithelial-mesenchymal transition. PLoS ONE. 2009;4, e4355.

    PubMed Central  PubMed  Google Scholar 

  153. Zhu Q, Wang Z, Hu Y, et al. miR-21 promotes migration and invasion by the miR-21/PDCD4/AP-1 feedback loop in human hepatocellular carcinoma. Oncol Rep. 2012;27:1660–8.

    CAS  PubMed  Google Scholar 

  154. Yang SZ, Zhang LD, Zhang Y, et al. HBx protein induces EMT through c-Src activation in SMMC-7721 hepatoma cell line. Biochem Biophys Res Commun. 2009;382:555–60.

    CAS  PubMed  Google Scholar 

  155. Lara-Pezzi E, Roche S, Andrisani OM, Sánchez- Madrid F, López-Cabrera M. The hepatitis B virus HBx protein induces adherens junction disruption in a src-dependent manner. Oncogene. 2001;20:3323–31.

    CAS  PubMed  Google Scholar 

  156. Arzumanyan A, Friedman T, Kotei E, Ng IO, Lian Z, Feitelson MA. Epigenetic repression of E-cadherin expression by hepatitis B virus x antigen in liver cancer. Oncogene. 2012;31:563–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Yoo YG, Oh SH, Park ES, et al. Hepatitis B virus X protein enhances transcriptional activity of hypoxia-inducible factor-1α through activation of mitogen activated protein kinase pathway. J Biol Chem. 2003;278:39076–84.

    CAS  PubMed  Google Scholar 

  158. Sanz-Camern P, Martín-Vílchez S, Lara-Pezzi E, et al. Hepatitis B virus promotes angiopoietin-2 expression in liver tissue. Role of HBV X protein. Am J Pathol. 2006;169:1215–22.

    Google Scholar 

  159. Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2013;13(2):123–35.

    CAS  PubMed  Google Scholar 

  160. Yamashita T, Budh A, Forgues M, Wang XW. Activation of hepatic stem cell marker EpCAM by Wnt-β-catenin signaling in hepatocellular carcinoma. Cancer Res. 2007;67:10831–9.

    CAS  PubMed  Google Scholar 

  161. Roskams T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene. 2006;25(27):3818–22.

    CAS  PubMed  Google Scholar 

  162. Yamashita T, Ji J, Budhu A, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136:1012–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Lee JS, Heo J, Libbrecht L, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med. 2006;12:410–6.

    CAS  PubMed  Google Scholar 

  164. Sell S, Leffert HL. Liver cancer stem cells. J Clin Oncol. 2008;26:2800–5.

    PubMed Central  PubMed  Google Scholar 

  165. Ji J, Yamashita T, Budhu A, et al. Identification of microRNA-181 by genome wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 2009;50:472–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Plentz RR, Park YN, Lechel A, et al. Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. Hepatology. 2007;45:968–76.

    CAS  PubMed  Google Scholar 

  167. Wiemann SU, Satyanarayana A, Tsahuridu M, et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. Faseb J. 2002;16:935–42.

    CAS  PubMed  Google Scholar 

  168. Kang TW, Yevsa T, Woller N, et al. Senescence surveillance of premalignant hepatocytes limits liver cancer development. Nature. 2011;479:547–51.

    CAS  PubMed  Google Scholar 

  169. Kojima H, Yokosuka O, Imazeki F, et al. Telomerase activity and telomere length in hepatocellular carcinoma and chronic liver disease. Gastroenterology. 1997;112:493–500.

    CAS  PubMed  Google Scholar 

  170. Nault JC, Mallet M, Pilati C, et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun. 2013;4:2218.

    PubMed Central  PubMed  Google Scholar 

  171. Nault JC, Calderaro J, Di Tommaso L, et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology. 2014;60(6):1983–92.

    CAS  PubMed  Google Scholar 

  172. Ozturk M, Arslan-Ergul A, Bagislar S, et al. Senescence and immortality in hepatocellular carcinoma. Cancer Lett. 2009;286(1):103–13.

    CAS  PubMed  Google Scholar 

  173. Kawai H, Suda T, Aoyagi Y, et al. Quantitative evaluation of genomic instability as a possible predictor for development of hepatocellular carcinoma: comparison of loss of heterozygosity and replication error. Hepatology. 2000;31:1246–50.

    CAS  PubMed  Google Scholar 

  174. Forgues M, Difilippantonio MJ, Linke SP, et al. Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol. 2003;23:5282–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Collado M, Gil J, Efeyan A, et al. Tumour biology: senescence in premalignant tumours. Nature. 2005;436:642.

    CAS  PubMed  Google Scholar 

  176. Benn J, Schneider RJ. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci U S A. 1994;91:10350–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Chung TW, Lee YC, Kim CH. Hepatitis B viral HBx induces MMP-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB J. 2004;18:1123–5.

    CAS  PubMed  Google Scholar 

  178. Tarn C, Lee S, Hu Y, Ashendel C, Andrisani OM. Hepatitis B virus X protein differentially activates RAS-RAF-MAPK & JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. J Biol Chem. 2001;276:34671–80.

    CAS  PubMed  Google Scholar 

  179. Wang XW, Forrester K, Yeh H, Feitelson MA, Gu JR, Harris CC. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Natl Acad Sci U S A. 1994;91:2230–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Park SH, Jung JK, Lim JS, Tiwari I, Jang KL. Hepatitis B virus X protein overcomes alltrans retinoic acid-induced cellular senescence by down-regulating levels of p16 and p21 via DNA methylation. J Gen Virol. 2011;92:1309–17.

    CAS  PubMed  Google Scholar 

  181. Zender L, Xue W, Zuber J, et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell. 2008;135:852–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Pang R, Lee TK, Poon RT, et al. Pin1 interacts with a specific serine-proline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis. Gastroenterology. 2007;132:1088–103.

    CAS  PubMed  Google Scholar 

  183. Clippinger AJ, Gearhart TL, Bouchard MJ. Hepatitis B virus X protein modulates apoptosis in primary rat hepatocytes by regulating both NF-kappaB and the mitochondrial permeability transition pore. J Virol. 2009;83:4718–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Iavarone M, Trabut JB, Delpuech O, et al. Characterisation of hepatitis B virus X protein mutants in tumour and non-tumour liver cells using laser capture microdissection. J Hepatol. 2003;39:253–61.

    CAS  PubMed  Google Scholar 

  185. Kim CM, Koike K, Saito I, et al. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature. 1991;351:317–20.

    CAS  PubMed  Google Scholar 

  186. Ma NF, Lau SH, Hu L, et al. COOH-terminal truncated HBV X protein plays key role in hepatocarcinogenesis. Clin Cancer Res. 2008;14:5061–8.

    CAS  PubMed  Google Scholar 

  187. Belloni L, li L, Palumbo GA et al. HAPs hepatitis B virus (HBV) capsid inhibitors block core protein interaction with the viral minichromosome and host cell genes and affect cccDNA transcription and stability. AASLD 2013 Hepatology 2013;58, S1, 138.

    Google Scholar 

  188. Gruffaz M, Testoni B, Durantel D et al. Hepatitis B core (HBc) protein is a key and very early negative regulator of the interferon response. AASLD 2013 Hepatology. 58, S1, 136.

    Google Scholar 

  189. Guo Y, Kang W, Lei X, et al. Hepatitis B viral core protein disrupts human host gene expression by binding to promoter regions. BMC Genomics. 2012;13:563.

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Hildt E, Saher G, Bruss V, Hofschneider PH. The hepatitis B virus large surface protein (LHBs) is a transcriptional activator. Virology. 1996;225:235–9.

    CAS  PubMed  Google Scholar 

  191. Hildt E, Munz B, Saher G, et al. The PreS2 activator MHBs(t) of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice. EMBO J. 2002;21:525–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Luan F, Liu H, Gao L, Liu J, Sun Z, Ju Y, et al. Hepatitis B virus protein preS2 potentially promotes HCC development via its transcriptional activation of hTERT. Gut. 2009;58:1528–37.

    CAS  PubMed  Google Scholar 

  193. Yang JC, Teng CF, Wu HC, Tsai HW, Chuang HC, Tsai TF, et al. Enhanced expression of vascular endothelial growth factor-A in ground glass hepatocytes and its implication in hepatitis B virus hepatocarcinogenesis. Hepatology. 2009;49:1962–71.

    CAS  PubMed  Google Scholar 

  194. Caselmann WH, Meyer M, Kekule AS, Lauer U, Hofschneider PH, Koshy R. A trans-activator function is generated by integration of hepatitis B virus preS/S sequences in human hepatocellular carcinoma DNA. Proc Natl Acad Sci U S A. 1990;87:2970–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Kekule AS, Lauer U, Meyer M, Caselmann WH, Hofschneider PH, Koshy R. The preS2/S region of integrated hepatitis B virus DNA encodes a transcriptional transactivator. Nature. 1990;343:457–61.

    CAS  PubMed  Google Scholar 

  196. Schluter V, Meyer M, Hofschneider PH, Koshy R, Caselmann WH. Integrated hepatitis B virus X and 30 truncated preS/S sequences derived from human hepatomas encode functionally active transactivators. Oncogene. 1994;9:3335–44.

    CAS  PubMed  Google Scholar 

  197. Lupberger J, Hildt E. Hepatitis B virus-induced oncogenesis. World J Gastroenterol. 2007;13:74–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  198. Huang SN, Chisari FV. Strong, sustained hepatocellular proliferation precedes hepatocarcinogenesis in hepatitis B surface antigen transgenic mice. Hepatology. 1995;21:620–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Levrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guerrieri, F., Belloni, L., Pediconi, N., Levrero, M. (2016). Pathobiology of Hepatitis B Virus-Induced Carcinogenesis. In: Liaw, YF., Zoulim, F. (eds) Hepatitis B Virus in Human Diseases. Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-22330-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22330-8_5

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-22329-2

  • Online ISBN: 978-3-319-22330-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics