Skip to main content

Hepatitis B Virus Virology and Replication

  • Chapter
Hepatitis B Virus in Human Diseases

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Hepatitis B virus (HBV) is an enveloped virus with an internal icosahedral nucleocapsid (NC) enclosing a partially double-stranded, relaxed circular DNA (rcDNA) genome, which is replicated through reverse transcription of a RNA intermediate, the pregenomic RNA (pgRNA). The virus specifically infects human hepatocytes by binding the cell surface receptor, sodium taurocholate cotransporting polypeptide, which was only recently identified. Upon cell entry, HBV is believed to deliver its internal NC to the nuclear pore complex where rcDNA is released into the nucleus. rcDNA is then converted, in an ill-understood process, to a covalently closed circular DNA (cccDNA), which serves as the transcriptional template for the production of all viral RNAs, subject to regulation by epigenetic mechanisms as well as ubiquitous and liver-enriched transcriptional factors. Upon translation, the viral reverse transcriptase assembles with pgRNA, with the help of host factors, into a ribonucleoprotein complex, which triggers initiation of viral reverse transcription using a novel protein priming mechanism as well as the assembly of immature progeny NCs with the viral capsid protein. Reverse transcription within NCs then converts pgRNA into the mature rcDNA, which can be recycled back to the nucleus for conversion to more cccDNA, or secreted in progeny virions extracellularly with the viral envelope proteins, completing the life cycle. The only target in this life cycle that has been exploited successfully so far for antiviral therapy is the DNA synthesis activity of the viral reverse transcriptase, but others are being actively explored. HBV replication also leads to the secretion of a large excess of subviral particles and a soluble antigen, which are nonessential for the virus but have greatly contributed, and will continue to contribute, to the diagnosis and prevention of HBV infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

Core

cccDNA:

Covalently closed circular DNA

CDK:

Cyclin-dependent protein kinase

CTD:

C-Terminal domain

DHBV:

Duck hepatitis B virus

dp:

Deproteinated

DR:

Direct repeat

DS:

Double-stranded

dslDNA:

Double-stranded linear DNA

EM:

Electron microscopy

ER:

Endoplasmic reticulum

HBcAg:

Hepatitis B core antigen

HBeAg:

Hepatitis B e antigen

HBsAg:

Hepatitis B surface antigen

HBV:

Hepatitis B virus

HBx:

Hepatitis B X protein

HNF:

Hepatocyte nuclear factor

HSP:

Heat shock protein

L:

Large envelope protein

M:

Middle envelope protein

NC:

Nucleocapsid

NLS:

Nuclear localization signal

nt:

Nucleotide

NTCP:

Sodium taurocholate cotransporting polypeptide

NTD:

N-Terminal domain

ORF:

Open reading frame

P:

Polymerase

PF:

Protein-free

pgRNA:

Pregenomic RNA

PKC:

Protein kinase C

PreC:

Precore

rcDNA:

Relaxed circular DNA

RNP:

Ribonucleoprotein

RT:

Reverse transcriptase

S:

Small envelope protein

SRPK:

Serine-arginine protein kinase

SS:

Single-stranded

TP:

Terminal protein

References

  1. Blumberg BS. Australia antigen and the biology of hepatitis B. Science. 1977;197(4298):17–25.

    CAS  PubMed  Google Scholar 

  2. Trepo C, Chan HL, Lok A. Hepatitis B virus infection. Lancet. 2014;384(9959):2053–63.

    CAS  PubMed  Google Scholar 

  3. Seeger C, Zoulim F, Mason WS. Hepadnaviruses. In: Howley PM, Knipe DM, editors. Fields virology. Philadelphia, PA: Lippincott, Williams & Wilkins; 2013. p. 2185–221.

    Google Scholar 

  4. Summers J, Smolec JM, Snyder R. A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. Proc Natl Acad Sci U S A. 1978;75:4533–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Mason WS, Seal G, Summers J. Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus. J Virol. 1980;36:829–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Summers J, Mason WS. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell. 1982;29(2):403–15.

    CAS  PubMed  Google Scholar 

  7. Dane DS, Cameron CH, Briggs M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet. 1970;1:695–8.

    CAS  PubMed  Google Scholar 

  8. Dryden KA, Wieland SF, Whitten-Bauer C, Gerin JL, Chisari FV, Yeager M. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol Cell. 2006;22(6):843–50.

    CAS  PubMed  Google Scholar 

  9. Seitz S, Urban S, Antoni C, Bottcher B. Cryo-electron microscopy of hepatitis B virions reveals variability in envelope capsid interactions. EMBO J. 2007;26(18):4160–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Asabe S, Wieland SF, Chattopadhyay PK, Roederer M, Engle RE, Purcell RH, et al. The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J Virol. 2009;83(19):9652–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Ning X, Nguyen D, Mentzer L, Adams C, Lee H, Ashley R, et al. Secretion of genome-free hepatitis B virus—single strand blocking model for virion morphogenesis of para-retrovirus. PLoS Pathog. 2011;7(9):e1002255.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Luckenbaugh L, Kitrinos KM, Delaney WE, Hu J. Genome-free hepatitis B virion levels in patient sera as a potential marker to monitor response to antiviral therapy. J Viral Hepat. 2015;22(6):561–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Summers J, O’Connell A, Millman I. Genome of hepatitis B virus: restriction enzyme cleavage and structure of DNA extracted from Dane particles. Proc Natl Acad Sci U S A. 1975;72:4597–601.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Seeger C, Ganem D, Varmus HE. Biochemical and genetic evidence for the hepatitis B virus replication strategy. Science. 1986;232(4749):477–84.

    CAS  PubMed  Google Scholar 

  15. Lien JM, Aldrich CE, Mason WS. Evidence that a capped oligoribonucleotide is the primer for duck hepatitis B virus plus-strand DNA synthesis. J Virol. 1986;57(1):229–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Gerlich WH, Robinson WS. Hepatitis B virus contains protein attached to the 5′ terminus of its complete DNA strand. Cell. 1980;21(3):801–9.

    CAS  PubMed  Google Scholar 

  17. Bartenschlager R, Schaller H. The amino-terminal domain of the hepadnaviral P-gene encodes the terminal protein (genome-linked protein) believed to prime reverse transcription. EMBO J. 1988;7(13):4185–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Heermann KH, Goldmann U, Schwartz W, Seyffarth T, Baumgarten H, Gerlich WH. Large surface proteins of hepatitis B virus containing the pre-s sequence. J Virol. 1984;52(2):396–402.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Bruss V, Ganem D. The role of envelope proteins in hepatitis B virus assembly. Proc Natl Acad Sci U S A. 1991;88(3):1059–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Schulze A, Schieck A, Ni Y, Mier W, Urban S. Fine mapping of pre-S sequence requirements for hepatitis B virus large envelope protein-mediated receptor interaction. J Virol. 2010;84(4):1989–2000.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Bruss V, Lu X, Thomssen R, Gerlich WH. Post-translational alterations in transmembrane topology of the hepatitis B virus large envelope protein. EMBO J. 1994;13(10):2273–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Ostapchuk P, Hearing P, Ganem D. A dramatic shift in the transmembrane topology of a viral envelope glycoprotein accompanies hepatitis B viral morphogenesis. EMBO J. 1994;13(5):1048–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Gallina A, Bonelli F, Zentilin L, Rindi G, Muttini M, Milanesi G. A recombinant hepatitis B core antigen polypeptide with the protamine-like domain deleted self-assembles into capsid particles but fails to bind nucleic acids. J Virol. 1989;63(11):4645–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Birnbaum F, Nassal M. Hepatitis B virus nucleocapsid assembly: primary structure requirements in the core protein. J Virol. 1990;64:3319–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Wynne SA, Crowther RA, Leslie AG. The crystal structure of the human hepatitis B virus capsid. Mol Cell. 1999;3(6):771–80.

    CAS  PubMed  Google Scholar 

  26. Wingfield PT, Stahl SJ, Williams RW, Steven AC. Hepatitis core antigen produced in Escherichia coli: subunit composition, conformational analysis, and in vitro capsid assembly. Biochemistry. 1995;34(15):4919–32.

    CAS  PubMed  Google Scholar 

  27. Hatton T, Zhou S, Standring D. RNA- and DNA-binding activities in hepatitis B virus capsid protein: a model for their role in viral replication. J Virol. 1992;66:5232–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Liao W, Ou JH. Phosphorylation and nuclear localization of the hepatitis B virus core protein: significance of serine in the three repeated SPRRR motifs. J Virol. 1995;69(2):1025–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Yeh CT, Liaw YF, Ou JH. The arginine-rich domain of hepatitis B virus precore and core proteins contains a signal for nuclear transport. J Virol. 1990;64(12):6141–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Eckhardt SG, Milich DR, McLachlan A. Hepatitis B virus core antigen has two nuclear localization sequences in the arginine-rich carboxyl terminus. J Virol. 1991;65(2):575–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Roossinck MJ, Siddiqui A. In vivo phosphorylation and protein analysis of hepatitis B virus core antigen. J Virol. 1987;61(4):955–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Jung J, Hwang SG, Chwae YJ, Park S, Shin HJ, Kim K. Phosphoacceptors threonine 162 and serines 170 and 178 within the carboxyl-terminal RRRS/T motif of the hepatitis B virus core protein make multiple contributions to hepatitis B virus replication. J Virol. 2014;88(16):8754–67.

    PubMed Central  PubMed  Google Scholar 

  33. Kann M, Gerlich WH. Effect of core protein phosphorylation by protein kinase C on encapsidation of RNA within core particles of hepatitis B virus. J Virol. 1994;68(12):7993–8000.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Ludgate L, Ning X, Nguyen DH, Adams C, Mentzer L, Hu J. Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids. J Virol. 2012;86(22):12237–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Daub H, Blencke S, Habenberger P, Kurtenbach A, Dennenmoser J, Wissing J, et al. Identification of SRPK1 and SRPK2 as the major cellular protein kinases phosphorylating hepatitis B virus core protein. J Virol. 2002;76(16):8124–37.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Liu KC, Ludgate L, Yuan ZH, Hu J. Regulation of multiple stages of hepadnavirus replication by carboxyl-terminal domain of viral core protein in trans. J Virol. 2015;89(5):2918–30.

    PubMed Central  PubMed  Google Scholar 

  37. Ou JH, Laub O, Rutter WJ. Hepatitis B virus gene function: the precore region targets the core antigen to cellular membranes and causes the secretion of the e antigen. Proc Natl Acad Sci U S A. 1986;83(6):1578–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Milich D, Liang TJ. Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology. 2003;38(5):1075–86.

    CAS  PubMed  Google Scholar 

  39. Ito K, Kim KH, Lok AS, Tong S. Characterization of genotype-specific carboxyl-terminal cleavage sites of hepatitis B virus e antigen precursor and identification of furin as the candidate enzyme. J Virol. 2009;83(8):3507–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. DiMattia MA, Watts NR, Stahl SJ, Grimes JM, Steven AC, Stuart DI, et al. Antigenic switching of hepatitis B virus by alternative dimerization of the capsid protein. Structure. 2013;21(1):133–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Magnius LO, Espmark A. A new antigen complex co-occurring with Australia antigen. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(2):335–7.

    CAS  PubMed  Google Scholar 

  42. Chen MT, Billaud JN, Sallberg M, Guidotti LG, Chisari FV, Jones J, et al. A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen. Proc Natl Acad Sci U S A. 2004;101(41):14913–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Toh H, Hayashida H, Miyata T. Sequence homology between retroviral reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower mosaic virus. Nature. 1983;305(5937):827–9.

    CAS  PubMed  Google Scholar 

  44. Chang LJ, Hirsch RC, Ganem D, Varmus HE. Effects of insertional and point mutations on the functions of the duck hepatitis B virus polymerase. J Virol. 1990;64(11):5553–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Radziwill G, Tucker W, Schaller H. Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity. J Virol. 1990;64(2):613–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Hu J, Seeger C. Expression and characterization of hepadnavirus reverse transcriptases. Methods Enzymol. 1996;275:195–208.

    CAS  PubMed  Google Scholar 

  47. Jones SA, Hu J. Hepatitis B virus reverse transcriptase: diverse functions as classical and emerging targets for antiviral intervention. Emerg Microbes Infect. 2013;2:e56.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Wang GH, Seeger C. The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis. Cell. 1992;71(4):663–70.

    CAS  PubMed  Google Scholar 

  49. Lanford RE, Notvall L, Beames B. Nucleotide priming and reverse transcriptase activity of hepatitis B virus polymerase expressed in insect cells. J Virol. 1995;69(7):4431–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Jones SA, Boregowda R, Spratt TE, Hu J. In vitro epsilon RNA-dependent protein priming activity of human hepatitis B virus polymerase. J Virol. 2012;86(9):5134–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Bartenschlager R, Junker-Niepmann M, Schaller H. The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation. J Virol. 1990;64(11):5324–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Hirsch RC, Lavine JE, Chang LJ, Varmus HE, Ganem D. Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as well as for reverse transcription. Nature. 1990;344(6266):552–5.

    CAS  PubMed  Google Scholar 

  53. Tavis JE, Cheng X, Hu Y, Totten M, Cao F, Michailidis E, et al. The hepatitis B virus ribonuclease H is sensitive to inhibitors of the human immunodeficiency virus ribonuclease H and integrase enzymes. PLoS Pathog. 2013;9(1):e1003125.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Kaplan PM, Greenman RL, Gerin JL, Purcell RH, Robinson WS. DNA polymerase associated with human hepatitis B antigen. J Virol. 1973;12:995–1005.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Zoulim F, Saputelli J, Seeger C. Woodchuck hepatitis virus X protein is required for viral infection in vivo. J Virol. 1994;68(3):2026–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Benhenda S, Cougot D, Buendia MA, Neuveut C. Hepatitis B virus X protein molecular functions and its role in virus life cycle and pathogenesis. Adv Cancer Res. 2009;103:75–109.

    CAS  PubMed  Google Scholar 

  57. Lucifora J, Arzberger S, Durantel D, Belloni L, Strubin M, Levrero M, et al. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J Hepatol. 2011;55(5):996–1003.

    CAS  PubMed  Google Scholar 

  58. Becker SA, Lee TH, Butel JS, Slagle BL. Hepatitis B virus X protein interferes with cellular DNA repair. J Virol. 1998;72(1):266–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Bouchard MJ, Wang LH, Schneider RJ. Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science. 2001;294(5550):2376–8.

    CAS  PubMed  Google Scholar 

  60. Gearhart TL, Bouchard MJ. The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication. J Virol. 2010;84(6):2675–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Rawat S, Bouchard M. The hepatitis B virus HBx protein activates AKT to simultaneously regulate HBV replication and hepatocyte survival. J Virol. 2015;89(2):999–1012.

    PubMed Central  PubMed  Google Scholar 

  62. Sir D, Tian Y, Chen WL, Ann DK, Yen TS, Ou JH. The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication. Proc Natl Acad Sci U S A. 2010;107(9):4383–8.

    PubMed Central  PubMed  Google Scholar 

  63. Kim SJ, Khan M, Quan J, Till A, Subramani S, Siddiqui A. Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis. PLoS Pathog. 2013;9(12):e1003722.

    PubMed Central  PubMed  Google Scholar 

  64. Slagle BL, Andrisani OM, Bouchard MJ, Lee CG, Ou JH, Siddiqui A. Technical standards for hepatitis B virus X protein (HBx) research. Hepatology. 2015;61(4):1416–24.

    CAS  PubMed  Google Scholar 

  65. Rumin S, Gripon P, Le Seyec J, Corral-Debrinski M, Guguen-Guillouzo C. Long-term productive episomal hepatitis B virus replication in primary cultures of adult human hepatocytes infected in vitro. J Viral Hepat. 1996;3(5):227–38.

    CAS  PubMed  Google Scholar 

  66. Kock J, Nassal M, MacNelly S, Baumert TF, Blum HE, von Weizsacker F. Efficient infection of primary tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J Virol. 2001;75(11):5084–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A. 2002;99(24):15655–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Shlomai A, Schwartz RE, Ramanan V, Bhatta A, de Jong YP, Bhatia SN, et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci U S A. 2014;111(33):12193–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Yang D, Zuo C, Wang X, Meng X, Xue B, Liu N, et al. Complete replication of hepatitis B virus and hepatitis C virus in a newly developed hepatoma cell line. Proc Natl Acad Sci U S A. 2014;111(13):E1264–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife. 2012;1:e00049.

    PubMed Central  PubMed  Google Scholar 

  71. Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C, Falth M, et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology. 2014;146(4):1070–83. e6.

    CAS  PubMed  Google Scholar 

  72. Li H, Zhuang Q, Wang Y, Zhang T, Zhao J, Zhang Y, et al. HBV life cycle is restricted in mouse hepatocytes expressing human NTCP. Cell Mol Immunol. 2014;11(2):175–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Gripon P, Le Seyec J, Rumin S, Guguen-Guillouzo C. Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology. 1995;213(2):292–9.

    CAS  PubMed  Google Scholar 

  74. Blanchet M, Sureau C. Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues. J Virol. 2007;81(11):5841–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Salisse J, Sureau C. A function essential to viral entry underlies the hepatitis B virus “a” determinant. J Virol. 2009;83(18):9321–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Sureau C, Salisse J. A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus a-determinant. Hepatology. 2013;57(3):985–94.

    CAS  PubMed  Google Scholar 

  77. Julithe R, Abou-Jaoude G, Sureau C. Modification of the hepatitis B virus envelope protein glycosylation pattern interferes with secretion of viral particles, infectivity, and susceptibility to neutralizing antibodies. J Virol. 2014;88(16):9049–59.

    PubMed Central  PubMed  Google Scholar 

  78. Oehler N, Volz T, Bhadra OD, Kah J, Allweiss L, Giersch K, et al. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism. Hepatology. 2014;60(5):1483–93.

    CAS  PubMed  Google Scholar 

  79. Guo H, Mao R, Block TM, Guo JT. Production and function of the cytoplasmic deproteinized relaxed circular DNA of hepadnaviruses. J Virol. 2010;84(1):387–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Rabe B, Vlachou A, Pante N, Helenius A, Kann M. Nuclear import of hepatitis B virus capsids and release of the viral genome. Proc Natl Acad Sci U S A. 2003;100(17):9849–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Schmitz A, Schwarz A, Foss M, Zhou L, Rabe B, Hoellenriegel J, et al. Nucleoporin 153 arrests the nuclear import of hepatitis B virus capsids in the nuclear basket. PLoS Pathog. 2010;6(1):e1000741.

    PubMed Central  PubMed  Google Scholar 

  82. Mason WS, Halpern MS, England JM, Seal G, Egan J, Coates L, et al. Experimental transmission of duck hepatitis B virus. Virology. 1983;131(2):375–84.

    CAS  PubMed  Google Scholar 

  83. Hu J, Seeger C. Hepadnavirus genome replication and persistence. In: Seeger C, Locarnini S, editors. Cold Spring Harb Perspect Med. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2015.

    Google Scholar 

  84. Jilbert AR, Miller DS, Scougall CA, Turnbull H, Burrell CJ. Kinetics of duck hepatitis B virus infection following low dose virus inoculation: one virus DNA genome is infectious in neonatal ducks. Virology. 1996;226(2):338–45.

    CAS  PubMed  Google Scholar 

  85. Raney AK, Milich DR, McLachlan A. Complex regulation of transcription from the hepatitis B virus major surface antigen promoter in human hepatoma cell lines. J Virol. 1991;65(9):4805–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Raney AK, Milich DR, Easton AJ, McLachlan A. Differentiation-specific transcriptional regulation of the hepatitis B virus large surface antigen gene in human hepatoma cell lines. J Virol. 1990;64(5):2360–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Zhang P, Raney AK, McLachlan A. Characterization of the hepatitis B virus X- and nucleocapsid gene transcriptional regulatory elements. Virology. 1992;191(1):31–41.

    CAS  PubMed  Google Scholar 

  88. Tang H, McLachlan A. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc Natl Acad Sci U S A. 2001;98(4):1841–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Zhou DX, Yen TS. Differential regulation of the hepatitis B virus surface gene promoters by a second viral enhancer. J Biol Chem. 1990;265(34):20731–4.

    CAS  PubMed  Google Scholar 

  90. Zhou DX, Yen TS. The ubiquitous transcription factor Oct-1 and the liver-specific factor HNF-1 are both required to activate transcription of a hepatitis B virus promoter. Mol Cell Biol. 1991;11(3):1353–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Guo W, Chen M, Yen TS, Ou JH. Hepatocyte-specific expression of the hepatitis B virus core promoter depends on both positive and negative regulation. Mol Cell Biol. 1993;13(1):443–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Trujillo MA, Letovsky J, Maguire HF, Lopez CM, Siddiqui A. Functional analysis of a liver-specific enhancer of the hepatitis B virus. Proc Natl Acad Sci U S A. 1991;88(9):3797–801.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Tokusumi Y, Zhou S, Takada S. Nuclear respiratory factor 1 plays an essential role in transcriptional initiation from the hepatitis B virus x gene promoter. J Virol. 2004;78(20):10856–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Zhang P, McLachlan A. Differentiation-specific transcriptional regulation of the hepatitis B virus nucleocapsid gene in human hepatoma cell lines. Virology. 1994;202(1):430–40.

    CAS  PubMed  Google Scholar 

  95. Quasdorff M, Protzer U. Control of hepatitis B virus at the level of transcription. J Viral Hepat. 2010;17(8):527–36.

    CAS  PubMed  Google Scholar 

  96. Newbold JE, Xin H, Tencza M, Sherman G, Dean J, Bowden S, et al. The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes. J Virol. 1995;69(6):3350–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Shi L, Li S, Shen F, Li H, Qian S, Lee DH, et al. Characterization of nucleosome positioning in hepadnaviral covalently closed circular DNA minichromosomes. J Virol. 2012;86(18):10059–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Belloni L, Pollicino T, De Nicola F, Guerrieri F, Raffa G, Fanciulli M, et al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc Natl Acad Sci U S A. 2009;106(47):19975–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T, et al. IFN-alpha inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Invest. 2012;122(2):529–37.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Liu F, Campagna M, Qi Y, Zhao X, Guo F, Xu C, et al. Alpha-interferon suppresses hepadnavirus transcription by altering epigenetic modification of cccDNA minichromosomes. PLoS Pathog. 2013;9(9):e1003613.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. van Breugel PC, Robert EI, Mueller H, Decorsiere A, Zoulim F, Hantz O, et al. Hepatitis B virus X protein stimulates gene expression selectively from extrachromosomal DNA templates. Hepatology. 2012;56(6):2116–24.

    PubMed  Google Scholar 

  102. Wu MH, Ma WL, Hsu CL, Chen YL, Ou JH, Ryan CK, et al. Androgen receptor promotes hepatitis B virus-induced hepatocarcinogenesis through modulation of hepatitis B virus RNA transcription. Sci Transl Med. 2010;2(32):32ra5.

    Google Scholar 

  103. Tian Y, Kuo CF, Chen WL, Ou JH. Enhancement of hepatitis B virus replication by androgen and its receptor in mice. J Virol. 2012;86(4):1904–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Wang SH, Yeh SH, Lin WH, Yeh KH, Yuan Q, Xia NS, et al. Estrogen receptor alpha represses transcription of HBV genes via interaction with hepatocyte nuclear factor 4alpha. Gastroenterology. 2012;142(4):989–98. e4.

    CAS  PubMed  Google Scholar 

  105. Huang ZM, Yen TS. Hepatitis B virus RNA element that facilitates accumulation of surface gene transcripts in the cytoplasm. J Virol. 1994;68(5):3193–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Junker-Niepmann M, Bartenschlager R, Schaller H. A short cis-acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA. EMBO J. 1990;9(10):3389–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Hirsch RC, Loeb DD, Pollack JR, Ganem D. Cis-acting sequences required for encapsidation of duck hepatitis B virus pregenomic RNA. J Virol. 1991;65(6):3309–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Bartenschlager R, Schaller H. Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. EMBO J. 1992;11(9):3413–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Hu J, Lin L. RNA-protein interactions in hepadnavirus reverse transcription. Front Biosci. 2009;14:1606–18.

    CAS  Google Scholar 

  110. Hu J, Boyer M. Hepatitis B virus reverse transcriptase and epsilon RNA sequences required for specific interaction in vitro. J Virol. 2006;80(5):2141–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Hu J, Flores D, Toft D, Wang X, Nguyen D. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol. 2004;78(23):13122–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Knaus T, Nassal M. The encapsidation signal on the hepatitis B virus RNA pregenome forms a stem-loop structure that is critical for its function. Nucleic Acids Res. 1993;21(17):3967–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Pollack JR, Ganem D. An RNA stem-loop structure directs hepatitis B virus genomic RNA encapsidation. J Virol. 1993;67(6):3254–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Pollack JR, Ganem D. Site-specific RNA binding by a hepatitis B virus reverse transcriptase initiates two distinct reactions: RNA packaging and DNA synthesis. J Virol. 1994;68(9):5579–87.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Jeong JK, Yoon GS, Ryu WS. Evidence that the 5′-end cap structure is essential for encapsidation of hepatitis B virus pregenomic RNA. J Virol. 2000;74(12):5502–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Jones SA, Clark DN, Cao F, Tavis JE, Hu J. Comparative analysis of hepatitis B virus polymerase sequences required for viral RNA binding, RNA packaging, and protein priming. J Virol. 2014;88(3):1564–72.

    PubMed Central  PubMed  Google Scholar 

  117. Cao F, Badtke MP, Metzger LM, Yao E, Adeyemo B, Gong Y, et al. Identification of an essential molecular contact point on the duck hepatitis B virus reverse transcriptase. J Virol. 2005;79(16):10164–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Seeger C, Leber EH, Wiens LK, Hu J. Mutagenesis of a hepatitis B virus reverse transcriptase yields temperature-sensitive virus. Virology. 1996;222(2):430–9.

    CAS  PubMed  Google Scholar 

  119. Chen Y, Robinson WS, Marion PL. Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis. J Virol. 1994;68(8):5232–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Kim S, Lee J, Ryu WS. Four conserved cysteine residues of the hepatitis B virus polymerase are critical for RNA pregenome encapsidation. J Virol. 2009;83(16):8032–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Hu J, Seeger C. Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci U S A. 1996;93(3):1060–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Hu J, Toft DO, Seeger C. Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J. 1997;16(1):59–68.

    PubMed Central  PubMed  Google Scholar 

  123. Hu J, Anselmo D. In vitro reconstitution of a functional duck hepatitis B virus reverse transcriptase: posttranslational activation by Hsp90. J Virol. 2000;74(24):11447–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Hu J, Toft D, Anselmo D, Wang X. In vitro reconstitution of functional hepadnavirus reverse transcriptase with cellular chaperone proteins. J Virol. 2002;76(1):269–79.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Stahl M, Retzlaff M, Nassal M, Beck J. Chaperone activation of the hepadnaviral reverse transcriptase for template RNA binding is established by the Hsp70 and stimulated by the Hsp90 system. Nucleic Acids Res. 2007;35(18):6124–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Stahl M, Beck J, Nassal M. Chaperones activate hepadnavirus reverse transcriptase by transiently exposing a C-proximal region in the terminal protein domain that contributes to epsilon RNA binding. J Virol. 2007;81(24):13354–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Wang X, Qian X, Guo HC, Hu J. Heat shock protein 90-independent activation of truncated hepadnavirus reverse transcriptase. J Virol. 2003;77(8):4471–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Porterfield JZ, Dhason MS, Loeb DD, Nassal M, Stray SJ, Zlotnick A. Full-length hepatitis B virus core protein packages viral and heterologous RNA with similarly high levels of cooperativity. J Virol. 2010;84(14):7174–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Gazina EV, Fielding JE, Lin B, Anderson DA. Core protein phosphorylation modulates pregenomic RNA encapsidation to different extents in human and duck hepatitis B viruses. J Virol. 2000;74(10):4721–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Lan YT, Li J, Liao W, Ou J. Roles of the three major phosphorylation sites of hepatitis B virus core protein in viral replication. Virology. 1999;259(2):342–8.

    CAS  PubMed  Google Scholar 

  131. Wang JC, Nickens DG, Lentz TB, Loeb DD, Zlotnick A. Encapsidated hepatitis B virus reverse transcriptase is poised on an ordered RNA lattice. Proc Natl Acad Sci U S A. 2014;111(31):11329–34.

    PubMed Central  PubMed  Google Scholar 

  132. Katen SP, Tan Z, Chirapu SR, Finn MG, Zlotnick A. Assembly-directed antivirals differentially bind quasiequivalent pockets to modify hepatitis B virus capsid tertiary and quaternary structure. Structure. 2013;21(8):1406–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Tan Z, Maguire ML, Loeb DD, Zlotnick A. Genetically altering the thermodynamics and kinetics of hepatitis B virus capsid assembly has profound effects on virus replication in cell culture. J Virol. 2013;87(6):3208–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Tan Z, Pionek K, Unchwaniwala N, Maguire ML, Loeb DD, Zlotnick A. The interface between HBV capsid proteins affects self-assembly, pgRNA packaging, and reverse transcription. J Virol. 2015;89(6):3275–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Sakamoto Y, Yamada G, Mizuno M, Nishihara T, Kinoyama S, Kobayashi T, et al. Full and empty particles of hepatitis B virus in hepatocytes from patients with HBsAg-positive chronic active hepatitis. Lab Invest. 1983;48(6):678–82.

    CAS  PubMed  Google Scholar 

  136. Albin C, Robinson W. Protein kinase activity in hepatitis B virus. J Virol. 1980;34:297–302.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Molnar-Kimber KL, Summers J, Taylor JM, Mason WS. Protein covalently bound to minus-strand DNA intermediates of duck hepatitis B virus. J Virol. 1983;45(1):165–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Wang GH, Seeger C. Novel mechanism for reverse transcription in hepatitis B viruses. J Virol. 1993;67(11):6507–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Wang GH, Zoulim F, Leber EH, Kitson J, Seeger C. Role of RNA in enzymatic activity of the reverse transcriptase of hepatitis B viruses. J Virol. 1994;68(12):8437–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Tavis JE, Perri S, Ganem D. Hepadnavirus reverse transcription initiates within the stem-loop of the RNA packaging signal and employs a novel strand transfer. J Virol. 1994;68(6):3536–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Fallows DA, Goff SP. Mutations in the epsilon sequences of human hepatitis B virus affect both RNA encapsidation and reverse transcription. J Virol. 1995;69(5):3067–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Nassal M, Rieger A. A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis. J Virol. 1996;70(5):2764–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Tavis JE, Ganem D. Evidence for activation of the hepatitis B virus polymerase by binding of its RNA template. J Virol. 1996;70(9):5741–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Tavis JE, Massey B, Gong Y. The duck hepatitis B virus polymerase is activated by its RNA packaging signal, epsilon. J Virol. 1998;72(7):5789–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Beck J, Nassal M. Sequence- and structure-specific determinants in the interaction between the RNA encapsidation signal and reverse transcriptase of avian hepatitis B viruses. J Virol. 1997;71:4971–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Beck J, Nassal M. Formation of a functional hepatitis B virus replication initiation complex involves a major structural alteration in the RNA template. Mol Cell Biol. 1998;18(11):6265–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Rieger A, Nassal M. Specific hepatitis B virus minus-strand DNA synthesis requires only the 5′ encapsidation signal and the 3′-proximal direct repeat DR1. J Virol. 1996;70(1):585–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  148. Zoulim F, Seeger C. Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase. J Virol. 1994;68(1):6–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Weber M, Bronsema V, Bartos H, Bosserhoff A, Bartenschlager R, Schaller H. Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription. J Virol. 1994;68(5):2994–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Lanford RE, Notvall L, Lee H, Beames B. Transcomplementation of nucleotide priming and reverse transcription between independently expressed TP and RT domains of the hepatitis B virus reverse transcriptase. J Virol. 1997;71(4):2996–3004.

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Boregowda RK, Lin L, Zhu Q, Tian F, Hu J. Cryptic protein priming sites in two different domains of duck hepatitis B virus reverse transcriptase for initiating DNA synthesis in vitro. J Virol. 2011;85(15):7754–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Beck J, Nassal M. A Tyr residue in the reverse transcriptase domain can mimic the protein-priming Tyr residue in the terminal protein domain of a hepadnavirus P protein. J Virol. 2011;85(15):7742–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Cao F, Jones SA, Li W, Cheng X, Hu Y, Hu J, et al. Sequences in the terminal protein and reverse transcriptase domains of the Hepatitis B Virus polymerase contribute to RNA binding and encapsidation. J Viral Hepat. 2013;21:882–93.

    Google Scholar 

  154. Molnar-Kimber KL, Summers JW, Mason WS. Mapping of the cohesive overlap of duck hepatitis B virus DNA and of the site of initiation of reverse transcription. J Virol. 1984;51:181–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Abraham TM, Loeb DD. Base pairing between the 5′ half of epsilon and a cis-acting sequence, phi, makes a contribution to the synthesis of minus-strand DNA for human hepatitis B virus. J Virol. 2006;80(9):4380–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Abraham TM, Loeb DD. The topology of hepatitis B virus pregenomic RNA promotes its replication. J Virol. 2007;81(21):11577–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Loeb DL, Hirsch RC, Ganem D. Sequence-independent RNA cleavages generate the primers for plus strand DNA synthesis in hepatitis B viruses: implications for other reverse transcribing elements. EMBO J. 1991;10:3533–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Lien JM, Petcu DJ, Aldrich CE, Mason WS. Initiation and termination of duck hepatitis B virus DNA synthesis during virus maturation. J Virol. 1987;61(12):3832–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Mueller-Hill K, Loeb DD. cis-Acting sequences 5E, M, and 3E interact to contribute to primer translocation and circularization during reverse transcription of avian hepadnavirus DNA. J Virol. 2002;76(9):4260–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Liu N, Ji L, Maguire ML, Loeb DD. cis-Acting sequences that contribute to the synthesis of relaxed-circular DNA of human hepatitis B virus. J Virol. 2004;78(2):642–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Liu N, Tian R, Loeb DD. Base pairing among three cis-acting sequences contributes to template switching during hepadnavirus reverse transcription. Proc Natl Acad Sci U S A. 2003;100(4):1984–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Lewellyn EB, Loeb DD. Base pairing between cis-acting sequences contributes to template switching during plus-strand DNA synthesis in human hepatitis B virus. J Virol. 2007;81(12):6207–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Staprans S, Loeb DD, Ganem D. Mutations affecting hepadnavirus plus-strand DNA synthesis dissociate primer cleavage from translocation and reveal the origin of linear viral DNA.J Virol. 1991;65(3):1255–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Yang W, Summers J. Integration of hepadnavirus DNA in infected liver: evidence for a linear precursor. J Virol. 1999;73(12):9710–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Mason WS, Jilbert AR, Summers J. Clonal expansion of hepatocytes during chronic woodchuck hepatitis virus infection. Proc Natl Acad Sci U S A. 2005;102(4):1139–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Summers J, Mason WS. Residual integrated viral DNA after hepadnavirus clearance by nucleoside analog therapy. Proc Natl Acad Sci U S A. 2004;101(2):638–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  167. Kock J, Wieland S, Blum HE, von Weizsacker F. Duck hepatitis B virus nucleocapsids formed by N-terminally extended or C-terminally truncated core proteins disintegrate during viral DNA maturation. J Virol. 1998;72(11):9116–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Chua PK, Tang FM, Huang JY, Suen CS, Shih C. Testing the balanced electrostatic interaction hypothesis of hepatitis B virus DNA synthesis by using an in vivo charge rebalance approach. J Virol. 2010;84(5):2340–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Basagoudanavar SH, Perlman DH, Hu J. Regulation of hepadnavirus reverse transcription by dynamic nucleocapsid phosphorylation. J Virol. 2007;81(4):1641–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Yu M, Summers J. Multiple functions of capsid protein phosphorylation in duck hepatitis B virus replication. J Virol. 1994;68(7):4341–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  171. Lewellyn EB, Loeb DD. The arginine clusters of the carboxy-terminal domain of the core protein of hepatitis B virus make pleiotropic contributions to genome replication. J Virol. 2011;85(3):1298–309.

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Lewellyn EB, Loeb DD. Serine phosphoacceptor sites within the core protein of hepatitis B virus contribute to genome replication pleiotropically. PLoS One. 2011;6(2):e17202.

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Chu TH, Liou AT, Su PY, Wu HN, Shih C. Nucleic acid chaperone activity associated with the arginine-rich domain of human hepatitis B virus core protein. J Virol. 2014;88(5):2530–43.

    PubMed Central  PubMed  Google Scholar 

  174. Wang JC, Dhason MS, Zlotnick A. Structural organization of pregenomic RNA and the carboxy-terminal domain of the capsid protein of hepatitis B virus. PLoS Pathog. 2012;8(9):e1002919.

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Perlman DH, Berg EA, O’Connor PB, Costello CE, Hu J. Reverse transcription-associated dephosphorylation of hepadnavirus nucleocapsids. Proc Natl Acad Sci U S A. 2005;102(25):9020–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Pugh J, Zweidler A, Summers J. Characterization of the major duck hepatitis B virus core particle protein. J Virol. 1989;63(3):1371–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Barrasa MI, Guo JT, Saputelli J, Mason WS, Seeger C. Does a cdc2 kinase-like recognition motif on the core protein of hepadnaviruses regulate assembly and disintegration of capsids? J Virol. 2001;75(4):2024–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Turelli P, Mangeat B, Jost S, Vianin S, Trono D. Inhibition of hepatitis B virus replication by APOBEC3G. Science. 2004;303(5665):1829.

    PubMed  Google Scholar 

  179. Nguyen DH, Gummuluru S, Hu J. Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G. J Virol. 2007;81(9):4465–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Nguyen DH, Hu J. Reverse transcriptase- and RNA packaging signal-dependent incorporation of APOBEC3G into hepatitis B virus nucleocapsids. J Virol. 2008;82(14):6852–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Kramvis A, Kew MC. Relationship of genotypes of hepatitis B virus to mutations, disease progression and response to antiviral therapy. J Viral Hepat. 2005;12(5):456–64.

    CAS  PubMed  Google Scholar 

  182. Tuttleman JS, Pourcel C, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell. 1986;47:451–60.

    CAS  PubMed  Google Scholar 

  183. Wu TT, Coates L, Aldrich CE, Summers J, Mason WS. In hepatocytes infected with duck hepatitis B virus, the template for viral RNA synthesis is amplified by an intracellular pathway. Virology. 1990;175(1):255–61.

    CAS  PubMed  Google Scholar 

  184. Summers J, Smith PM, Horwich AL. Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification. J Virol. 1990;64(6):2819–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  185. Summers J, Smith PM, Huang MJ, Yu MS. Morphogenetic and regulatory effects of mutations in the envelope proteins of an avian hepadnavirus. J Virol. 1991;65(3):1310–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Delaney WE, Isom HC. Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus. Hepatology. 1998;28(4):1134–46.

    CAS  PubMed  Google Scholar 

  187. Gao W, Hu J. Formation of hepatitis B virus covalently closed circular DNA: removal of genome-linked protein. J Virol. 2007;81(12):6164–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  188. Lentz TB, Loeb DD. Roles of the envelope proteins in the amplification of covalently closed circular DNA and completion of synthesis of the plus-strand DNA in hepatitis B virus. J Virol. 2011;85(22):11916–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  189. Zhang YY, Zhang BH, Theele D, Litwin S, Toll E, Summers J. Single-cell analysis of covalently closed circular DNA copy numbers in a hepadnavirus-infected liver. Proc Natl Acad Sci U S A. 2003;100(21):12372–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Lenhoff RJ, Summers J. Coordinate regulation of replication and virus assembly by the large envelope protein of an avian hepadnavirus. J Virol. 1994;68(7):4565–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Cui X, Ludgate L, Ning X, Hu J. Maturation-associated destabilization of hepatitis B virus nucleocapsid. J Virol. 2013;87(21):11494–503.

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Kock J, Rosler C, Zhang JJ, Blum HE, Nassal M, Thoma C. Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner. PLoS Pathog. 2010;6(9):e1001082.

    PubMed Central  PubMed  Google Scholar 

  193. Ludgate L, Adams C, Hu J. Phosphorylation state-dependent interactions of hepadnavirus core protein with host factors. PLoS One. 2011;6(12):e29566.

    PubMed Central  CAS  PubMed  Google Scholar 

  194. Zhang YY, Theele DP, Summers J. Age-related differences in amplification of covalently closed circular DNA at early times after duck hepatitis B virus infection of ducks. J Virol. 2005;79(15):9896–903.

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Guidotti LG, Matzke B, Schaller H, Chisari FV. High-level hepatitis B virus replication in transgenic mice. J Virol. 1995;69(10):6158–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  196. Raney AK, Eggers CM, Kline EF, Guidotti LG, Pontoglio M, Yaniv M, et al. Nuclear covalently closed circular viral genomic DNA in the liver of hepatocyte nuclear factor 1 alpha-null hepatitis B virus transgenic mice. J Virol. 2001;75(6):2900–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  197. Sohn JA, Litwin S, Seeger C. Mechanism for CCC DNA synthesis in hepadnaviruses. PLoS One. 2009;4(11):e8093.

    PubMed Central  PubMed  Google Scholar 

  198. Guo H, Jiang D, Zhou T, Cuconati A, Block TM, Guo JT. Characterization of the intracellular deproteinized relaxed circular DNA of hepatitis B virus: an intermediate of covalently closed circular DNA formation. J Virol. 2007;81(22):12472–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  199. Miller RH, Robinson WS. Hepatitis B virus DNA forms in nuclear and cytoplasmic fractions of infected human liver. Virology. 1984;137(2):390–9.

    CAS  PubMed  Google Scholar 

  200. Wieland SF, Spangenberg HC, Thimme R, Purcell RH, Chisari FV. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc Natl Acad Sci U S A. 2004;101(7):2129–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Jones SA, Hu J. Protein-primed terminal transferase activity of hepatitis B virus polymerase. J Virol. 2013;87(5):2563–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  202. Koniger C, Wingert I, Marsmann M, Rosler C, Beck J, Nassal M. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc Natl Acad Sci U S A. 2014;111(40):E4244–53.

    PubMed Central  PubMed  Google Scholar 

  203. Cortes Ledesma F, El Khamisy SF, Zuma MC, Osborn K, Caldecott KW. A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature. 2009;461(7264):674–8.

    PubMed  Google Scholar 

  204. Watanabe T, Sorensen EM, Naito A, Schott M, Kim S, Ahlquist P. Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc Natl Acad Sci U S A. 2007;104(24):10205–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  205. Lambert C, Doring T, Prange R. Hepatitis B virus maturation is sensitive to functional inhibition of ESCRT-III, Vps4, and gamma 2-adaptin. J Virol. 2007;81(17):9050–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  206. Kian Chua P, Lin MH, Shih C. Potent inhibition of human Hepatitis B virus replication by a host factor Vps4. Virology. 2006;354(1):1–6.

    CAS  PubMed  Google Scholar 

  207. Gerelsaikhan T, Tavis J, Bruss V. Hepatitis B virus nucleocapsid envelopment does not occur without genomic DNA synthesis. J Virol. 1996;70:4269–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  208. Wei Y, Tavis JE, Ganem D. Relationship between viral DNA synthesis and virion envelopment in hepatitis B viruses. J Virol. 1996;70(9):6455–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Perlman D, Hu J. Duck hepatitis B virus virion secretion requires a double-stranded DNA genome. J Virol. 2003;77(3):2287–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  210. Seeger C, Hu J. Why are hepadnaviruses DNA and not RNA viruses? Trends Microbiol. 1997;5(11):447–50.

    CAS  PubMed  Google Scholar 

  211. Koschel M, Oed D, Gerelsaikhan T, Thomssen R, Bruss V. Hepatitis B virus core gene mutations which block nucleocapsid envelopment. J Virol. 2000;74(1):1–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Pairan A, Bruss V. Functional surfaces of the hepatitis B virus capsid. J Virol. 2009;83(22):11616–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  213. Ponsel D, Bruss V. Mapping of amino acid side chains on the surface of hepatitis B virus capsids required for envelopment and virion formation. J Virol. 2003;77(1):416–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  214. Yuan TT, Sahu GK, Whitehead WE, Greenberg R, Shih C. The mechanism of an immature secretion phenotype of a highly frequent naturally occurring missense mutation at codon 97 of human hepatitis B virus core antigen. J Virol. 1999;73(7):5731–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  215. Le Pogam S, Yuan TT, Sahu GK, Chatterjee S, Shih C. Low-level secretion of human hepatitis B virus virions caused by two independent, naturally occurring mutations (P5T and L60V) in the capsid protein. J Virol. 2000;74(19):9099–105.

    PubMed Central  PubMed  Google Scholar 

  216. Chang SF, Netter HJ, Bruns M, Schneider R, Frolich K, Will H. A new avian hepadnavirus infecting snow geese (Anser caerulescens) produces a significant fraction of virions containing single-stranded DNA. Virology. 1999;262(1):39–54.

    CAS  PubMed  Google Scholar 

  217. Greco N, Hayes MH, Loeb DD. Snow goose hepatitis B virus (SGHBV) envelope and capsid proteins independently contribute to the ability of SGHBV to package capsids containing single-stranded DNA in virions. J Virol. 2014;88(18):10705–13.

    PubMed Central  PubMed  Google Scholar 

  218. Bruss V, Thomssen R. Mapping a region of the large envelope protein required for hepatitis B virion maturation. J Virol. 1994;68(3):1643–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  219. Bruss V. A short linear sequence in the pre-S domain of the large hepatitis B virus envelope protein required for virion formation. J Virol. 1997;71(12):9350–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  220. Le Pogam S, Shih C. Influence of a putative intermolecular interaction between core and the pre-S1 domain of the large envelope protein on hepatitis B virus secretion. J Virol. 2002;76(13):6510–7.

    PubMed Central  PubMed  Google Scholar 

  221. Schittl B, Bruss V. Mutational profiling of the variability of individual amino acid positions in the hepatitis B virus matrix domain. Virology. 2014;458–459:183–9.

    PubMed  Google Scholar 

  222. Lambert C, Prange R. Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: implications for translocational regulation. Proc Natl Acad Sci U S A. 2003;100(9):5199–204.

    PubMed Central  CAS  PubMed  Google Scholar 

  223. Schormann W, Kraft A, Ponsel D, Bruss V. Hepatitis B virus particle formation in the absence of pregenomic RNA and reverse transcriptase. J Virol. 2006;80(8):4187–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  224. Gerin JL, Ford EC, Purcell RH. Biochemical characterization of Australia antigen. Evidence for defective particles of hepatitis B virus. Am J Pathol. 1975;81(3):651–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  225. Kaplan PM, Ford EC, Purcell RH, Gerin JL. Demonstration of subpopulations of Dane particles. J Virol. 1976;17(3):885–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  226. MacNab GM, Alexander JJ, Lecatsas G, Bey EM, Urbanowicz JM. Hepatitis B surface antigen produced by a human hepatoma cell line. Br J Cancer. 1976;34(5):509–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  227. Knowles BB, Howe CC, Aden DP. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980;209(4455):497–9.

    CAS  PubMed  Google Scholar 

  228. Thompson AJ, Nguyen T, Iser D, Ayres A, Jackson K, Littlejohn M, et al. Serum hepatitis B surface antigen and hepatitis B e antigen titers: disease phase influences correlation with viral load and intrahepatic hepatitis B virus markers. Hepatology. 2010;51(6):1933–44.

    CAS  PubMed  Google Scholar 

  229. Zoulim F, Testoni B, Lebosse F. Kinetics of intrahepatic covalently closed circular DNA and serum hepatitis B surface antigen during antiviral therapy for chronic hepatitis B: lessons from experimental and clinical studies. Clin Gastroenterol Hepatol. 2013;11(8):1011–3.

    CAS  PubMed  Google Scholar 

  230. Carman WF, Zanetti AR, Karayiannis P, Waters J, Manzillo G, Tanzi E, et al. Vaccine-induced escape mutant of hepatitis B virus. Lancet. 1990;336(8711):325–9.

    CAS  PubMed  Google Scholar 

  231. Lai MW, Lin TY, Tsao KC, Huang CG, Hsiao MJ, Liang KH, et al. Increased seroprevalence of HBV DNA with mutations in the s gene among individuals greater than 18 years old after complete vaccination. Gastroenterology. 2012;143(2):400–7.

    CAS  PubMed  Google Scholar 

  232. Kamili S, Sozzi V, Thompson G, Campbell K, Walker CM, Locarnini S, et al. Efficacy of hepatitis B vaccine against antiviral drug-resistant hepatitis B virus mutants in the chimpanzee model. Hepatology. 2009;49(5):1483–91.

    CAS  PubMed  Google Scholar 

  233. Lacombe K, Boyd A, Lavocat F, Pichoud C, Gozlan J, Miailhes P, et al. High incidence of treatment-induced and vaccine-escape hepatitis B virus mutants among human immunodeficiency virus/hepatitis B-infected patients. Hepatology. 2013;58(3):912–22.

    CAS  PubMed  Google Scholar 

  234. Scaglione SJ, Lok AS. Effectiveness of hepatitis B treatment in clinical practice. Gastroenterology. 2012;142(6):1360–8. e1.

    PubMed  Google Scholar 

  235. Nkongolo S, Ni Y, Lempp FA, Kaufman C, Lindner T, Esser-Nobis K, et al. Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor. J Hepatol. 2014;60(4):723–31.

    CAS  PubMed  Google Scholar 

  236. Volz T, Allweiss L, Ben MM, Warlich M, Lohse AW, Pollok JM, et al. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J Hepatol. 2013;58(5):861–7.

    CAS  PubMed  Google Scholar 

  237. Deres K, Schroder CH, Paessens A, Goldmann S, Hacker HJ, Weber O, et al. Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science. 2003;299(5608):893–6.

    CAS  PubMed  Google Scholar 

  238. Campagna MR, Liu F, Mao R, Mills C, Cai D, Guo F, et al. Sulfamoylbenzamide derivatives inhibit the assembly of hepatitis B virus nucleocapsids. J Virol. 2013;87(12):6931–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  239. Lin L, Hu J. Inhibition of hepadnavirus reverse transcriptase-epsilon RNA interaction by porphyrin compounds. J Virol. 2008;82(5):2305–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  240. Jones SA, Murakami E, Delaney W, Furman P, Hu J. Non-competitive inhibition of hepatitis b virus reverse transcriptase protein priming and DNA synthesis by the nucleoside analog Clevudine. Antimicrob Agents Chemother. 2013;57:4181–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  241. Cai D, Mills C, Yu W, Yan R, Aldrich CE, Saputelli JR, et al. Identification of disubstituted sulfonamide compounds as specific inhibitors of hepatitis B virus covalently closed circular DNA formation. Antimicrob Agents Chemother. 2012;56(8):4277–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  242. Seeger C, Sohn JA. Targeting hepatitis B Virus with CRISPR/Cas9. Mol Ther Nucleic Acids. 2014;3:e216.

    PubMed Central  CAS  PubMed  Google Scholar 

  243. Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 2014;343(6176):1221–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

I thank colleagues in my laboratory for critical reading of the manuscript and helpful comments. I acknowledge support by the National Institutes of Health, the American Cancer Society, the American Liver Foundation, and the Medical Foundation for work carried out in my laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Hu M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hu, J. (2016). Hepatitis B Virus Virology and Replication. In: Liaw, YF., Zoulim, F. (eds) Hepatitis B Virus in Human Diseases. Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-22330-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22330-8_1

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-22329-2

  • Online ISBN: 978-3-319-22330-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics