Advertisement

Boron pp 181-197 | Cite as

Electronic Requirements and Structural Preferences for Large Polyhedral Boranes

  • Musiri M. Balakrishnarajan
  • Pattath D. Pancharatna
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 20)

Abstract

The structural and electronic preferences of boron-based polyhedral systems with 12 or fewer vertices is well understood by the combined use of localized and delocalized bonding paradigms. Current research in polyhedral boranes predominantly involves scaling the size within the single polyhedron or by having multiple polyhedral units. Though large and multiple polyhedra are experimentally known for long in molecules as well as solids, the beginning of the current century witnessed comprehensive understanding of bonding in these extended systems. Here, we address the various bonding features exhibited by boron-based large polyhedral systems with the scaling of the system size, their electronic and structural preferences.

Keywords

Boron Atom Hexagonal Ring Electronic Requirement Skeletal Bonding Bridge Hydrogen Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wang Y, Quillian B, Wei P, Wannere CS, Xie Y, King RB, Schaefer HF, Schleyer PR, Robinson GH (2007) A stable neutral diborene containing a BB double bond. J Am Chem Soc 129(41):12412–12413CrossRefGoogle Scholar
  2. 2.
    Braunschweig H, Dewhurst RD, Hammond K, Mies J, Radacki K, Vargas A (2012) Ambient-temperature isolation of a compound with a boron-boron triple bond. Science 336(6087):1420–1422CrossRefGoogle Scholar
  3. 3.
    Frenking G, Holzmann N (2012) A boron-boron triple bond. Science 336(6087):1394–1395CrossRefGoogle Scholar
  4. 4.
    Laszlo P (2000) A diborane story. Angew Chem Int Ed 39(12):2071–2072CrossRefGoogle Scholar
  5. 5.
    Raine GP, Schaefer HF (1984) Vibrational frequencies for the classical and nonclassical forms of protonated acetylene-C2H+3. J Chem Phys 81(9):4034–4037CrossRefGoogle Scholar
  6. 6.
    Schleyer PVR, Kos AJ, Pople JA, Balaban AT (1982) Carbenium-carbonium structures, H2C+-CH4 +, for the ethane dication. J Am Chem Soc 104(13):3771–3773CrossRefGoogle Scholar
  7. 7.
    Longuet-Higgins HC (1949) Substances hydrogenées avec défaut d’electrons. J Chim Phys 46:268–275Google Scholar
  8. 8.
    Longuet-Higgins HC, de Roberts VM (1954) The electronic structure of the borides MB6. Proc R Soc Lond Ser A 224:336–347Google Scholar
  9. 9.
    Longuet-Higgins HC, de Roberts VM (1955) The electronic structure of an icosahedron of boron atoms. Proc R Soc Lond Ser A 230:110–119CrossRefGoogle Scholar
  10. 10.
    Eberhardt WH, Crawford B, Lipscomb WN (1954) The valence structure of the boron hydrides. J Chem Phys 22(6):989–1001CrossRefGoogle Scholar
  11. 11.
    Lipscomb WN (1977) The Boranes and their relatives. Science 196(4294):1047–1055 Google Scholar
  12. 12.
    Wade K (1971) Electron deficient compounds. Nelson, LondonCrossRefGoogle Scholar
  13. 13.
    Williams RE (1971) Carboranes and boranes; polyhedra and polyhedral fragments. Inorg Chem 10(1):210–214CrossRefGoogle Scholar
  14. 14.
    Wade K (1976) Structural and bonding patterns in cluster chemistry. In: Emeléus HJ, Sharpe AG (eds) Advances in inorganic chemistry and radiochemistry, vol 18. Elsevier-Science, pp 1–66Google Scholar
  15. 15.
    Hoffmann R, Lipscomb WN (1962) Theory of polyhedral molecules. I. Physical factorizations of the secular equation. J Chem Phys 36(8):2179–2189CrossRefGoogle Scholar
  16. 16.
    Stone AJ (1980) A new approach to bonding in transition metal clusters. Mol Phys 41(6):1339–1354CrossRefGoogle Scholar
  17. 17.
    Balakrishnarajan MM, Hoffmann R, Pancharatna PD, Jemmis ED (2003) Magic electron counts and bonding in tubular boranes. Inorg Chem 42(15):4650–4659CrossRefGoogle Scholar
  18. 18.
    Mingos DMP (1972) A general theory for cluster and ring compounds of the main group and transition elements. Nat Phys Sci 236(68):99–102CrossRefGoogle Scholar
  19. 19.
    Jemmis ED (1982) Overlap control and stability of polyhedral molecules. Closo-carboranes. J Am Chem Soc 104(25):7017–7020CrossRefGoogle Scholar
  20. 20.
    Jemmis ED, Schleyer PR (1982) Aromaticity in three dimensions. 4. Influence of orbital compatibility on the geometry and stability of capped annulene rings with six interstitial electrons. J Am Chem Soc 104(18):4781–4788CrossRefGoogle Scholar
  21. 21.
    Aihara J (1978) Three-dimensional aromaticity of polyhedral boranes. J Am Chem Soc 100(11):3339–3342CrossRefGoogle Scholar
  22. 22.
    Friedman LB, Dobrott RD, Lipscomb WN (1963) Preparation and structure of a New Boron hydride, B20H16. J Am Chem Soc 85(21):3505–3506CrossRefGoogle Scholar
  23. 23.
    Miller NE, Muetterties EL (1963) A new boron hydride, B20H16. J Am Chem Soc 85(21):3506–3506CrossRefGoogle Scholar
  24. 24.
    Pitochelli AR, Hawthorne FM (1960) The isolation of the icosahedral B12H12 −2 Ion. J Am Chem Soc 82(12):3228–3229CrossRefGoogle Scholar
  25. 25.
    Londesborough MGS, Hnyk D, Bould J, Serrano-Andrés L, Sauri V, Oliva JM, Kubát P, Polívka T, Lang K (2012) Distinct photophysics of the isomers of B18H22 explained. Inorg Chem 51(3):1471–1479CrossRefGoogle Scholar
  26. 26.
    Cerdán L, Braborec J, Garcia-Moreno I, Costela A, Londesborough MGS (2015) A borane laser. Nat Commun 6:5958CrossRefGoogle Scholar
  27. 27.
    Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2001) Electronic requirements for macropolyhedral boranes. Chem Rev 102(1):93–144CrossRefGoogle Scholar
  28. 28.
    Mingos DMP (1984) Polyhedral skeletal electron pair approach. Acc Chem Res 17(9):311–319CrossRefGoogle Scholar
  29. 29.
    Balakrishnarajan MM, Jemmis ED (2000) Electronic requirements of polycondensed polyhedral boranes. J Am Chem Soc 122(18):4516–4517CrossRefGoogle Scholar
  30. 30.
    Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2001) Missing hydrogens in B19H20 ? application of electron counting rule for edge-sharing macropolyhedral boranes. Inorg Chem 40(8):1730–1731CrossRefGoogle Scholar
  31. 31.
    Oliva JMR, Juanjo H, Drahomír K, John D, Rosenfeld VR (2013) Borane polyhedra as building blocks for unknown but potentially isolatable New molecules – extensions based on computations of the known B18H22 isomers. Croat Chem Acta 86(4):485–494CrossRefGoogle Scholar
  32. 32.
    Shameema O, Jemmis ED (2008) Orbital compatibility in the condensation of polyhedral boranes. Angew Chem Int Ed 47(30):5561–5564CrossRefGoogle Scholar
  33. 33.
    Kiani FA, Hofmann M (2006) Which nido:nido-macropolyhedral boranes are most stable? Inorg Chem 45(17):6996–7003CrossRefGoogle Scholar
  34. 34.
    Hnyk D, Holub J, Jelínek T, Macháček J, Londesborough MGS (2010) Revisiting B20H16 by means of a joint computational/experimental NMR approach. Collect Czech Chem C 75(11):1115–1123CrossRefGoogle Scholar
  35. 35.
    Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2001) A unifying electron-counting rule for macropolyhedral boranes, metallaboranes, and metallocenes. J Am Chem Soc 123(18):4313–4323CrossRefGoogle Scholar
  36. 36.
    Carr N, Mullica DF, Sappenfield EL, Stone FGA (1994) Carborane complexes of nickel and platinum: synthesis and protonation reactions of anionic allyl (carborane) species. Inorg Chem 33(8):1666–1673CrossRefGoogle Scholar
  37. 37.
    Maier A, Hofmann M, Pritzkow H, Siebert W (2002) A planar, aromatic bicyclo-tetraborane(4). Angew Chem Int Ed 41(9):1529–1532CrossRefGoogle Scholar
  38. 38.
    Präsang C, Hofmann M, Geiseler G, Massa W, Berndt A (2002) Aromatic boranes with planar-tetracoordinate boron atoms and very short B − B distances. Angew Chem Int Ed 41(9):1526–1529CrossRefGoogle Scholar
  39. 39.
    Balakrishnarajan MM, Hoffmann R (2004) Electron-deficient bonding in ⧫ rhomboid rings. J Am Chem Soc 126(40):13119–13131CrossRefGoogle Scholar
  40. 40.
    Albert B (1998) A new “old” sodium boride: linked pentagonal bipyramids and octahedra in Na3B20. Angew Chem Int Ed 37(8):1117–1118CrossRefGoogle Scholar
  41. 41.
    Brown LD, Lipscomb WN (1977) Closo boron hydrides with 13 to 24 boron atoms. Inorg Chem 16(12):2989–2996CrossRefGoogle Scholar
  42. 42.
    Schleyer PR, Najafian K, Mebel AM (1998) The large closo-borane dianions, BnHn 2− (n = 13–17) Are aromatic, why are they unknown? Inorg Chem 37(26):6765–6772CrossRefGoogle Scholar
  43. 43.
    Deng L, Chan HS, Xie ZW (2006) Synthesis, structure, and reactivity of 13-vertex carboranes and 14-vertex metallacarboranes. J Am Chem Soc 128(15):5219–5230CrossRefGoogle Scholar
  44. 44.
    Deng L, Zhang J, Chan HS, Xie ZW (2006) Synthesis and structure of 14-and 15-vertex ruthenacarboranes. Angew Chem Int Ed 45(26):4309–4313CrossRefGoogle Scholar
  45. 45.
    McIntosh RD, Ellis D, Rosair GM, Welch AJ (2006) A 15-vertex heteroborane. Angew Chem Int Ed 45(26):4313–4316CrossRefGoogle Scholar
  46. 46.
    Wong EH, Prasad L, Gabe EJ, Gatter MG (1983) Structural characterization of a B11H11 2−derivative: molecular structure of (C2H5)4 N+B11H10S(CH3)2. Inorg Chem 22(7):1143–1146CrossRefGoogle Scholar
  47. 47.
    Burke A, Ellis D, Giles BT, Hodson BE, Macgregor SA, Rosair GM, Welch AJ (2003) Beyond the icosahedron: the first 13-vertex carborane. Angew Chem Int Ed 42(2):225–228CrossRefGoogle Scholar
  48. 48.
    Grimes RN (2003) Supercarboranes. Angew Chem Int Ed 42(11):1198–1200CrossRefGoogle Scholar
  49. 49.
    Pancharatna PD, Marutheeswaran S, Austeria MP, Balakrishnarajan MM (2013) Deltahedra with holes: structural preferences of supraicosahedral boranes. Polyhedron 63:55–59CrossRefGoogle Scholar
  50. 50.
    Jemmis ED, Balakrishnarajan MM (2001) Polyhedral boranes and elemental boron: direct structural relations and diverse electronic requirements. J Am Chem Soc 123(18):4324–4330CrossRefGoogle Scholar
  51. 51.
    Rathke J, Schaeffer R (1974) Boranes. XXXVIII. Reactions of hexaborane(10) with boron hydride lewis acids. Inorg Chem 13(12):3008–3011CrossRefGoogle Scholar
  52. 52.
    Jemmis ED, Balakrishnarajan MM (2000) Ab initio predictions on novel stuffed polyhedral boranes. J Am Chem Soc 122(30):7392–7393CrossRefGoogle Scholar
  53. 53.
    Albert B, Hillebrecht H (2009) Boron: elementary challenge for experimenters and theoreticians. Angew Chem Int Ed 48(46):8640–8668CrossRefGoogle Scholar
  54. 54.
    Hughes RE, Kennard CHL, Sullenger DB, Weakliem HA, Sands DE, Hoard JL (1963) The structure of -rhombohedral boron. J Am Chem Soc 85(3):361–362CrossRefGoogle Scholar
  55. 55.
    Prasad DLVK, Balakrishnarajan MM, Jemmis ED (2005) Electronic structure and bonding of beta-rhombohedral boron using cluster fragment approach. Phys Rev B 72(19):195102CrossRefGoogle Scholar
  56. 56.
    Kasper JS, Richards SM (1969) The crystal structure of YB66. Acta Cryst 25(6):237–251Google Scholar
  57. 57.
    Balakrishnarajan MM, Pancharatna PD, Hoffmann R (2007) Structure and bonding in boron carbide: the invincibility of imperfections. New J Chem 31(4):473–485CrossRefGoogle Scholar
  58. 58.
    Balakrishnarajan MM, Hoffmann R (2003) Exohedral multiple bonding in polyhedra. 2. Skeletal distortions in ring-stacked boranes. Inorg Chem 43(1):27–32CrossRefGoogle Scholar
  59. 59.
    Balakrishnarajan MM, Hoffmann R (2003) Polyhedral boranes with Exo multiple bonds: three-dimensional inorganic analogues of quinones. Angew Chem Int Ed 42(32):3777–3781CrossRefGoogle Scholar
  60. 60.
    Finze M, Reiss GJ, Zähres M (2007) [1-H2N − CB11F11] − synthesis and reactions of a functionalized fluorinated carbadodecaborate anion. Inorg Chem 46(23):9873–9883CrossRefGoogle Scholar
  61. 61.
    Farha OK, Julius RL, Lee MW, Huertas RE, Knobler CB, Hawthorne MF (2005) Synthesis of stable dodecaalkoxy derivatives of hypercloso-B12H12. J Am Chem Soc 127(51):18243–18251Google Scholar
  62. 62.
    Pancharatna PD, Balakrishnarajan MM, Jemmis ED, Hoffmann R (2012) Polyhedral borane analogues of the benzynes and beyond: bonding in variously charged B12H10 isomers. J Am Chem Soc 134(13):5916–5920CrossRefGoogle Scholar
  63. 63.
    Lewis JS, Kaczmarczyk A (1966) Polyhedral borane free radicals 1. J Am Chem Soc 88(5):1068–1069CrossRefGoogle Scholar
  64. 64.
    Joosten D, Pantenburg I, Wesemann L (2006) Distanna-closo-dodecaborate. Angew Chem Int Ed 45(7):1085–1087CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Musiri M. Balakrishnarajan
    • 1
  • Pattath D. Pancharatna
    • 1
  1. 1.Department of ChemistryPondicherry UniversityPondicherryIndia

Personalised recommendations