Skip to main content

Big Borane Assemblies, Macropolyhedral Species and Related Chemistry

  • Chapter
Book cover Boron

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 20))

Abstract

Structural and behavioral chemistries based on carbon hydrides are extensive. It can be argued that chemistries based on boron hydrides are in principle similarly extensive. Molecular chemistry based on boron-hydrides is characterised by cluster formation, and has been dominated by work on single-cluster compounds. For an extensive ‘big molecule’ chemistry based on boron hydrides – one that rivals the extent of chemistry based on carbon hydrides – a chemistry that is based on the intimate fusion of single-cluster borane-based entities, to generate so-called ‘macropolyhedral’ species, has developed. In contrast to carbon-based chemistry, and thence with no natural feedstocks available, boron-containing cluster chemistry is entirely a human-made creation, and so the area necessarily progresses by exploratory experimental chemistry augmented more recently by computational approaches. This chapter attempts to offer a perspective on aspects of the field of larger borane-based molecular compounds from the approach of preparative and pragmatic bench science, and, in accord with the general theme of this volume, points out areas in which calculational chemistry has played a role and in which useful future roles can be envisaged. Following from the initial elucidation – now more than about thirty years ago – of most of the basic binary boron-hydride macropolyhedrals, an emphasis is placed on subsequent work which has largely been concerned with metallaboranes, thiaboranes and metallathiaboranes, as well as very intimately fused globular ‘megaloborane’ entities.

A perspective on aspects of larger-boranes chemistry from the point of view of preparative and pragmatic bench chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beckett MA, Crook JE, Greenwood NN, Kennedy JD, McDonald WS (1982) Molecular structure of the seventeen-vertex conjuncto platinaheptadecaborane [(PMe2Ph)PtB16H18(PMe2Ph)]. J Chem Soc Chem Commun 1982:552–553

    Article  Google Scholar 

  2. Beckett MA, Crook JE, Greenwood NN, Kennedy JD (1983) A macropolyhedral polymetallaborane cluster: molecular structure of the seventeen-vertex triplatinaheptadecaborane [(PPhMe2)4Pt3B14H16]. J Chem Soc Chem Commun 1983:1228–1230

    Article  Google Scholar 

  3. Williams RE (1971) Carboranes and boranes: polyhedra and polyhedral fragments. Inorg Chem 18:210–214

    Article  Google Scholar 

  4. Williams RE (1976) Coordination number pattern recognition theory of carborane structures. Adv Inorg Chem Radiochem 18:67–142

    CAS  Google Scholar 

  5. Wade K (1971) The structural significance of the number of skeletal bonding electron pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. Chem Commun 1971:792–793

    Article  Google Scholar 

  6. Wade K (1976) Structural and bonding patterns in cluster chemistry. Adv Inorg Chem Radiochem 10:1–66

    Google Scholar 

  7. Mingos DMP (1972) A general theory for cluster and ring compounds of the main group and transition elements. Nat Phys Sci 236:99–102

    Article  CAS  Google Scholar 

  8. O’Neill ME, Wade K (1982) Chapter 1: Structural and bonding features in metallaboranes and metallacarboranes. In: Grimes RN (ed) Metal interactions with boron clusters. Plenum, New York, pp 1–41. ISBN 0-306-40933-X

    Google Scholar 

  9. Mingos DMP (1984) Polyhedral skeletal electron-pair approach. Acc Chem Res 17:311–319

    Article  CAS  Google Scholar 

  10. Kennedy JD (1998) Chapter 3: Disobedient Skeletons. In: Casanova J (ed) The borane carborane carbocation continuum. Wiley, New York/Chichester, pp 85–116. ISBN 0-471-18075-0

    Google Scholar 

  11. Enrione RE, Boer FB, Lipscomb WN (1964) Preparation, isolation, and structure of B8H12. J Am Chem Soc 86:1451–1452

    Article  CAS  Google Scholar 

  12. Enrione RE, Boer FB, Lipscomb WN (1964) Octaborane(12). Inorg Chem 3:1659–1666

    Article  CAS  Google Scholar 

  13. See, for example: Guggenberger LJ (1969) Crystal structure of tetraamminezinc octahydrooctaborate(−2). Zn(NH3)4B8H8. Inorg Chem 8: 2771–2774; and references therein

    Google Scholar 

  14. Jelínek T, Štíbr B, Kennedy JD, Thornton-Pett M (1995) Eight-vertex polyhedral monocarbaborane chemistry. Three closo anions, [CB7H8]¯, [CB7H7I]¯, [CB7H6I2]¯. Preparation and structural studies. J Chem Soc Dalton Trans 1995:431–437

    Article  Google Scholar 

  15. Wiersema RE, Hawthorne MF (1973) Electrochemistry and boron-11 nuclear magnetic resonance spectra of monocarbon carboranes. Inorg Chem 12:785–788

    Article  CAS  Google Scholar 

  16. Tolpin EI, Lipscomb WN (1973) Fluxional behavior of undecahydroundecaborate(2-) (B11H11 2−). J Am Chem Soc 95:2384–2386

    Article  CAS  Google Scholar 

  17. Volkov O, Paetzold P (2003) The chemistry of the undecaborates. J Organomet Chem 680:301–311

    Article  CAS  Google Scholar 

  18. Štíbr B, Kennedy JD, Drdáková E, Thornton-Pett M (1994) Nine-vertex polyhedral iridamonocarbaborane chemistry. Single-crystal X-ray diffraction analysis and NMR studies of the products of thermolysis of [(CO)(PPh3)2IrCB7H8]. Emerging alternative systematic cluster-geometry patterns. J Chem Soc Dalton Trans 1994:229–236

    Article  Google Scholar 

  19. Bould J, Kennedy JD, Thornton-Pett M (1992) Ten-vertex metallaborane chemistry. Aspects of the iridadecaborane closo-isonido-isocloso structural continuum. J Chem Soc Dalton Trans 1992:563–576

    Article  Google Scholar 

  20. See, for example: Bould J, Harrington RW, Clegg W, Kennedy JD (2012) Nine-vertex metallaborane chemistry. Preparation and characterisation of [1,1,1-(PMe3)2H-isocloso-IrB8H7-8-X], where X = Cl or H. J Organomet Chem (TP Fehlner 75th Birthday Edition) 721/722:155–163

    Google Scholar 

  21. Bould J, Kennedy JD (2014) An Assessment of the use of DFT calculations to investigate the intercarbon stretching phenomenon in C-substituted ‘pseudocloso’-3,1,2-MC2B9 metalladicarbaboranes. J Organomet Chem 749:163–173

    Article  CAS  Google Scholar 

  22. Kennedy RD, Kennedy JD (2015) The contrarotational fluxionality of [3,3-(PMe2Ph)2-closo-3,1,2-PtC2B9H11] and related species. Dalton Trans 44:9620–9629

    Google Scholar 

  23. Fehlner TP (1999) Connections Between 11B NMR Chemical Shifts and Electronic Structure in Metallaboranes. A Précis. Collect Czech Chem Commun 64:767–782

    Article  CAS  Google Scholar 

  24. Londesborough MGS (2002) New developments in macropolyhedral metallaborane chemistry. Thesis, University of Leeds, Leeds

    Google Scholar 

  25. Volkov O, Rath NP, Barton L (2003) Derivatization of the macropolyhedral cluster [B22H22]2− : Isolation and characterization of the 5′-OEt- and 4‵-OH derivatives. J Organomet Chem 608:212–217

    Article  CAS  Google Scholar 

  26. See, for example: Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2002) Electronic requirements for macropolyhedral boranes. Chem Rev 102:93–144

    Google Scholar 

  27. Rathke J, Schaeffer R (1977) New boron hydride, pentadecaborane(23). J Am Chem Soc 95:3402–3402

    Article  Google Scholar 

  28. Greenwood NN, McGinnety JA, Owen JD (1972) Crystal structure of bis [bis(diethyl ether)-μ-(dodecahydro-nido-decaborato)-cadmium], [(Et2O)2Cd(B10H12)]2. J Chem Soc Dalton Trans 1972:989–992

    Article  Google Scholar 

  29. Parker KG, Russell JM, Sabat M, Grimes RN (1999) A novel heterooctametallic metallacarborane tetramer. Collect Czech Chem Commun 64:819–828

    Article  CAS  Google Scholar 

  30. Gaines DF, Walsh JL (1978) Chemistry of 2-berylla-nido-hexaborane(11) compounds. Insertion of beryllium into a borane cage. Inorg Chem 17:1238–1241

    Article  CAS  Google Scholar 

  31. Gaines DF, Walsh JL, Calabrese JC (1978) Low-temperature crystal and molecular structures of 2-tetrahydroborato-2-berylla-nido-hexaborane(11) and 2,2′-commo-bis [2-berylla-nido-hexaborane(11)]. Inorg Chem 17:1242–1248

    Article  CAS  Google Scholar 

  32. Gaines DF (1980) Recent advances in the chemistry of pentaborane(9). In: Parry RW, Kodama G (eds) Boron Chemistry-4. Pergamon, Oxford/New York, pp 73–79. ISBN 0-08-025256-7

    Google Scholar 

  33. Bicerano J, Lipscomb WN (1979) Molecular orbital studies of nido-beryllaboranes, B5H10BeX, where X is borane(4), pentaborane(10), methyl, or cyclopentadiene. Inorg Chem 18:1565–1571

    Article  CAS  Google Scholar 

  34. Hawthorne MF, Young DC, Wegner PA (1965) Carbametallic boron hydride derivatives. I. Apparent analogs of ferrocene and ferricinium Ion. J Am Chem Soc 87:1818–1819

    Article  CAS  Google Scholar 

  35. Hawthorne MF, Pilling PL (1965) Carbametallic boron hydride derivatives. III. The π-C5H5Fe(π-B9C2H11) system. J Am Chem Soc 87:3987–3988

    Google Scholar 

  36. Hawthorne MF, Andrews TD (1965) Carborane analogues of cobalticinium ion. Chem Commun 1965:443–444

    Google Scholar 

  37. Pitochelli AR, Hawthorne MF (1962) The Preparation of a New Boron Hydride B18H22. J Am Chem Soc 82:3218–3218

    Article  Google Scholar 

  38. Heřmánek S, Fetter K, Plešek J (1972) A new stable borane B14H18. Chem Ind (London) 1972:606–606

    Google Scholar 

  39. Heřmánek S, Fetter K, Plešek J, Todd LJ, Garber AR (1975) Tetradecaborane(18). Preparation and structure. Inorg Chem 14:2250–2253

    Article  Google Scholar 

  40. Plešek J, Heřmánek S, Hanousek F (1968) Chemistry of Boranes X. Novel stable borane B16H20. Collect Czech Chem Commun 33:699–705

    Article  Google Scholar 

  41. Rathke J, Moody DC, Schaeffer R (1974) Boranes. XLI. New boron hydride, tridecaborane(19). Inorg Chem 13:3040–3042

    Article  CAS  Google Scholar 

  42. Rathke J, Schaeffer R (1974) Boranes XXXVIII. Reactions of hexaborane(10) with boron hydride Lewis acids. Inorg Chem 13:3008–3011

    Article  CAS  Google Scholar 

  43. Dolan PJ, Moody DC, Schaeffer R (1981) Studies of boranes. 48. Reactions of hexaborane(10) with Lewis acids to yield acid–base complexes and synthesis of halogenated hexaborane(10) derivatives via halogen-transfer reactions. Inorg Chem 20:745–748

    Article  CAS  Google Scholar 

  44. Dixon DA, Kleier DA, Halgren TA, Lipscomb WN (1974) Localized orbitals in large boron hydrides. Hexadecaborane and related molecules. J Am Chem Soc 96:2293–2295

    Article  CAS  Google Scholar 

  45. Bould J, Jelínek T, Barrett SA, Coles SJ, Hursthouse MB, Thornton-Pett M, Štíbr B, Kennedy JD (2005) Macropolyhedral boron-containing cluster chemistry. The reaction of B16H20 and B14H18 with [PtMe2(PMe2Ph)2] to give [(PMe2Ph)2PtB16H17Me] and [(PMe2Ph)2PtB14H16]. Dalton Trans 2005:1499–1503

    Article  CAS  Google Scholar 

  46. Carr MJ, Perera SD, Jelínek T, Kilner CA, Štíbr B, Kennedy JD (2005) Macropolyhedral boron-containing cluster chemistry. An unusual ‘neo-nido’ ten-vertex subcluster configuration in a [(PPh3)2RuB16H20] species. J Organomet Chem (EUROBORON 3 Special Edition) 690:2857–2859

    Article  CAS  Google Scholar 

  47. Carr MJ, Perera SD, Jelínek T, Štíbr B, Clegg W, Kilner CA, Kennedy JD (2007) Macropolyhedral boron-containing cluster chemistry. The unique nido-five-vertex-〈B2〉-nido-ten-vertex conjuncto structure of [(η5-C5Me5)2Rh2B11H15] via an unexpected cluster-dismantling. Chem Commun 2007:3559–3561

    Google Scholar 

  48. Bould J, Dörfler U, Thornton-Pett M, Kennedy JD (2001) A rearrangement of the ten-boron nido/arachno decaboranyl cluster. Inorg Chem Commun 4:544–546

    Article  CAS  Google Scholar 

  49. Jelínek T, Grüner B, Císařová I, Štíbr B, Kennedy JD (2007) Macropolyhedral boron-containing cluster chemistry. The reaction of syn-B18H22 with SMe2 and I2 in monoglyme. Structure of [7-(SMe2)-syn-B18H20]. Inorg Chem Commun 10:125–128

    Article  CAS  Google Scholar 

  50. Olsen FP, Vasavada RC, Hawthorne MF (1968) The chemistry of n-B18H22 and i-B18H22. J Am Chem Soc 90:3946–3951

    Article  CAS  Google Scholar 

  51. Heřmánek S, Plotová H (1970) Chemistry of Boranes. XXII. The acidity of boranes. Collect Czech Chem Commun 36:1639–1643

    Article  Google Scholar 

  52. Heřmánek S, Plotová H, Plešek J (1975) On the acidity characteristics of decaborane(14) and its benzyl derivatives in organic solvent-water systems. Collect Czech Chem Commun 40:3593–3601

    Article  Google Scholar 

  53. Stanko VI, Chapovskii YA, Brattsev VA, Zakharkin LI (1965) The chemistry of decaborane and its derivatives. Russ Chem Rev 34:424–439

    Article  Google Scholar 

  54. Sneath RL, Todd LJ (1973) Transition metal and carborane derivatives obtained from octadecaborane(22). Inorg Chem 12:44–48

    Article  CAS  Google Scholar 

  55. Carr MJ, Perera SD, Hamilton Mcleod AR, Londesborough MGS, Jelínek T, Štíbr B, Kilner CA, Thornton-Pett M, Kennedy JD (2010) Aspects of macropolyhedral boron-containing cluster chemistry – August 2010. Abstracts Fifth European Meeting on Boron Chemistry (EUROBORON 5). Edinburgh, Scotland, 29 August – 02 September 2010, Abstract no. O25, p 46

    Google Scholar 

  56. Londesborough MGS, Dolanský J, Cerdán L, Lang K, Jelínek T, Garcia-Moreno I, Oliva J, Hnyk D, Roca-Sanjuán D, Nikl M, Kennedy JD (2015) Products of the reaction between anti-B18H22 and pyridine. Work in preparation for publication

    Google Scholar 

  57. Huffman JC, Moody DC, Schaeffer R (1975) New boron hydride. Tetradecaborane(20). J Am Chem Soc 97:1621–1622

    Article  CAS  Google Scholar 

  58. Huffman JC, Moody DC, Schaeffer R (1981) Studies of boranes. 47. Synthesis and x-ray crystallographic study of tetradecaborane(20). Inorg Chem 20:741–745

    Article  CAS  Google Scholar 

  59. Brewer CT, Grimes RN (1984) Metal-induced oxidative fusion of boranes. Synthesis of dodecaborane(16), the first neutral dodecaborane. J Am Chem Soc 106:2722–2723

    Article  CAS  Google Scholar 

  60. Jelínek T, Kennedy JD, Štíbr B (1994) Macropolyhedral boron-containing cluster chemistry. Cluster fusion to give the novel nido-nido eighteen-vertex dithiaoctadecaborane (anti)-[9,9′-S2B16H16]. J Chem Soc Chem Commun 1994:1415–1416

    Article  Google Scholar 

  61. Dosangh PK, Bould J, Londesborough MGS, Jelínek T, Thornton-Pett M, Štíbr B, Kennedy JD (2003) Macropolyhedral boron-containing cluster chemistry. Aspects of the S2B16H16 system. Preparation, structure, NMR spectroscopy and isomerism. J Organomet Chem 680:312–322

    Article  CAS  Google Scholar 

  62. Kaur P, Thornton-Pett M, Clegg W, Kennedy JD (1996) Macropolyhedral boron-containing cluster chemistry. An interesting nineteen-vertex dithianickelaborane, [(PPh3)NiS2B16H12(PPh3)]. J. Chem Soc Dalton Trans 1996:4155–4157

    Google Scholar 

  63. Carr MJ, Clegg W, Kilner CA, Londesborough MGS, Kennedy JD (2010) Macropolyhedral boron-containing cluster chemistry. [S2B16H17] - a new eighteen-vertex thiaborane anion. Collect Czech Chem Commun (B Štíbr 70th Birthday Edition) 75:807–812

    Article  CAS  Google Scholar 

  64. Jelínek T, Kilner C, Thornton-Pett M, Kennedy JD (1999) Macropolyhedral boron-containing cluster chemistry. The [SB17H19] anion: a nido-ten-vertex : arachno-ten-vertex cluster architecture and the first single-sulphur macropolyhedral thiaborane. Chem Commun 1999:1905–1906

    Google Scholar 

  65. Kaur P, Holub J, Rath NP, Bould J, Barton L, Štíbr B, Kennedy JD (1996) Macropolyhedral boron-containing cluster chemistry. Nineteen-vertex S2B17H17(SMe2). An unusual apical boron atom of cluster connectivity six that introduces a new polyhedral borane building block. Chem Commun 1996:273–275

    Article  Google Scholar 

  66. Jelínek T, Kennedy JD, Štíbr B, Thornton-Pett M (1998) Macropolyhedral boron-containing cluster chemistry. An interesting angular change in mutual subcluster orientation in the oxidative protonation of [S2B17H18] to give [S2B17H16]. Inorg Chem Commun 1:179–181

    Article  Google Scholar 

  67. Jelínek T, Kennedy JD, Štíbr B, Thornton-Pett M (1994) Macropolyhedral boron-containing cluster chemistry. The isolation and characterisation of the first macropolyhedral thiaborane [9,9′-S2B17H18]. Angew Chem Int Edn 33:1599–1601

    Google Scholar 

  68. Ormsby DL, Greatrex R, Kennedy JD (2008) Macropolyhedral boron-containing cluster chemistry. The {S2B18} system. The reversible disassembly and reassembly of the hexagonal pyramidal {B7} feature in the [S2B18H19] anion. An establishment of molecular structures, intermediates and transition states by the DFT-structure/GIAO-NMR method. Dalton Trans (K Wade Special Edition) (‘Hot Paper’) 2008:1625–1634

    Google Scholar 

  69. Jelínek T, Cisařová I, Štíbr B, Kennedy JD, Thornton-Pett M (1998) Macropolyhedral boron-containing cluster chemistry. The [S2B18H19] anion, and the reversible generation of an apical boron cluster site with cluster connectivity six. J Chem Soc Dalton Trans (Dalton Commun) 1998:2965–2967

    Article  Google Scholar 

  70. Kennedy JD (1986) The polyhedral metallaboranes, part II. Prog Inorg Chem 34:211–434. ISBN 0-471-81948-4

    Google Scholar 

  71. Cheek YM, Greenwood NN, Kennedy JD, McDonald WS (1982) New modes of bonding in some platinum derivatives of B18H22: X-ray structures of [(PMe2Ph)4Pt212-B18H16] and of three structural isomers of [(PMe2Ph)2PtB18H20]. J Chem Soc Chem Commun 1982:80–81

    Google Scholar 

  72. Fontaine XLR, Greenwood NN, Kennedy JD, MacKinnon PI, Thornton-Pett M (1986) Preparation of [(C5Me5)2Rh2B17H18] via a degradative insertion from anti-B18H22, and a mechanism for anti → syn macropolyhedral interconversion. J Chem Soc. Chem Commun 1986:1111–1113

    Article  Google Scholar 

  73. Shea SL, Bould J, Londesborough MGS, Perera SD, Franken A, Ormsby DL, Jelínek T, Štíbr B, Holub J, Kilner CA, Thornton-Pett M, Kennedy JD (2003) Polyhedral boron-containing cluster chemistry. Aspects of architecture beyond the icosahedron: some recent supermolecular and supramolecular developments. Pure Appl Chem 75:1239–1248

    Article  CAS  Google Scholar 

  74. Bernhardt E, Brauer DJ, Finze M, Willner H (2007) closo-[B21H18]: a face-fused diicosahedral borate ion. Angew Chem Int Ed 46:2927–2930

    Google Scholar 

  75. Schlüter F, Bernhardt E (2012) Fluorierung von closo,closo-[B21H18] mit aHF und F2 zu closo,closo-[B21H18–x F x ] (x = 1–3) und closo,closo-[B21F18]. Z Anorg Allg Chem 638:594–561

    Article  CAS  Google Scholar 

  76. Enemark JH, Friedman LB, Lipscomb WN (1966) The molecular and crystal structure of B20H16(NCCH3)2 · CH3CN. Inorg Chem 5:2165–2172

    Article  CAS  Google Scholar 

  77. Shea SL, Jelínek T, Štíbr B, Thornton-Pett M, Kennedy JD (2000) Macropolyhedral boron-containing cluster chemistry. Isolation and structure of the twenty-one-vertex globular cluster compound [(η5-C5Me5)3Ir3B18H15(OH)]. Inorg Chem Commun 3:169–172

    Article  CAS  Google Scholar 

  78. Kennedy JD (1997) Macropolyhedral boron-containing cluster chemistry. Overview and recent developments. July 1996. In: Siebert W (ed) Advances in Boron Chemistry. Royal Society of Chemistry, Cambridge, pp 451–462. ISBN 0-08504-722-0

    Google Scholar 

  79. McGrath TD, Kennedy JD, McInnes YM, Thornton-Pett M (1997) Macropolyhedral platinaboranes. In: Siebert W (ed) Advances in Boron Chemistry. Royal Society of Chemistry, Cambridge, pp 480–483. ISBN 0-08504-722-0

    Google Scholar 

  80. Jelínek T, Štíbr B, Kennedy JD, Thornton-Pett M (1997) Excursions into the country of fused-cluster heteroboranes. In: Siebert W (ed) Advances in Boron Chemistry. Royal Society of Chemistry, Cambridge, pp 426–429

    Google Scholar 

  81. Yao H-J, Hu C-H, Sun J, Jin R-S, Zheng P-J, Bould J, Greatrex R, Kennedy JD, Ormsby DL, Thornton-Pett M (1999) Isolation and structure of [(PPh3)3(PPh2)2Pd4B20H16]. A possible prognostic for new globular borane-based cluster architectures. Collect Czech Chem Commun 64:927–937

    Article  CAS  Google Scholar 

  82. Bould J, Ormsby DL, Yao H-J, Hu C-H, Sun J, Jin R-S, Shea SL, Clegg W, Jelínek T, Rath NP, Thornton-Pett M, Greatrex R, Zheng P-J, Barton L, Štíbr B, Kennedy JD (2000) Macropolyhedral boron-containing cluster chemistry. Further Progress beyond the Icosahedron. July 1999. In: Davidson M, Hughes AK, Marder TB, Wade K (eds) Contemporary boron chemistry. Royal Society of Chemistry, Cambridge, UK, pp 171–174. ISBN 0-85404-835-09

    Chapter  Google Scholar 

  83. Bould J, Kennedy JD, Barton L, Rath NP (1997) Macropolyhedral boron-containing cluster chemistry. Triple cluster fusion and the molecular structure of [(PMe3)2IrB26H24Ir(CO)(PMe3)2]. A 28-vertex metallaborane cluster with a polyboron core. J Chem Soc Chem Commun 1997:2405–2407

    Article  Google Scholar 

  84. Bould J, Clegg W, Teat SJ, Barton L, Rath NP, Thornton-Pett M, Kennedy JD (1999) An approach to megaloboranes. Mixed and multiple cluster fusions involving iridaborane and platinaborane cluster compounds. Crystal structure determinations by conventional and synchrotron methods. In: Boron Chemistry at the Millennium, Special Edition of Inorg Chim Acta 289:95–124

    Google Scholar 

  85. Mingos DMP, Forsyth ML, Welch AJ (1977) X-Ray crystallographic and theoretical studies on ‘slipped’ metallacarboranes. J Chem Soc Chem Commun 1977:605–607

    Google Scholar 

  86. Mingos DMP, Forsyth ML, Welch AJ (1978) Molecular and crystal structure of 3,3-bis(triethylphosphine)-1,2-di-carba-3-platinadodecaborane(11), and molecular-orbital analysis of the ‘slip’ distortion in carbametallaboranes. J Chem Soc Dalton Trans 1978:1363–1374

    Article  Google Scholar 

  87. Bould J, Barrett SA, Barton L, Rath NP, Kennedy JD (1998) Macropolyhedral boron-containing cluster chemistry. Isolation and characterisation of the 27-vertex contiguous triple-cluster species [(PMe2Ph)2PtB26H26(PMe2Ph)]. Inorg Chem Commun 1:365–367

    Article  CAS  Google Scholar 

  88. Bullen NJ (2009) New aspects of monocarbaborane chemistry. Thesis, University of Leeds, Leeds

    Google Scholar 

  89. Lipscomb WN, Massa L (1992) Examples of large closo boron hydride analogs of carbon fullerenes. Inorg Chem 31:2297–2299

    Article  CAS  Google Scholar 

  90. See, for example: Boustani I, Rubio A, Alonso JA (2000) Ab initio study of boron hydride spheres. In: Davidson M, Hughes AK, Marder TB, Wade K (eds) Contemporary boron chemistry, Royal Society of Chemistry, Cambridge, pp 493–496. ISBN 0-85404-835-09

    Google Scholar 

  91. Bould J, Londesborough MGS, Ormsby DL, MacBride JAH, Wade K, Kilner CA, Clegg W, Teat SJ, Thornton-Pett M, Greatrex R, Kennedy JD (2002) Macropolyhedral boron-containing cluster chemistry. Models for intermediates en route to globular and discoidal megaloborane assemblies. Structures of [nido-B10H12(nido-B5H8)2] and [(CH2CH2C5H4N)-arachno-B10H10(NC5H4-closo-C2B10H11)] as determined by synchrotron X-ray diffraction analysis. J Organomet Chem 657:256–261

    Google Scholar 

  92. Jemmis ED, Balakrishnarajam MM (2001) Polyhedral boranes and elemntal boron: direct structural relations and diverse electronic requirements. J Am Chem Soc 123:4324–4330

    Article  CAS  Google Scholar 

  93. Prasad DLVK, Jemmis ED (2008) Stuffing improves the stability of fullerenelike boron clusters. Phys Rev Lett 100:1665504–1665504

    Article  CAS  Google Scholar 

  94. See, for example: Lv J, Wang Y, Zhu L, Ma Y (2014) B38: an all-boron fullerene analogue. Nanoscale 6:11692–11696

    Google Scholar 

  95. Huang W, Sergeeva AP, Zhai H-J, Averkiev BB, Wang L-S, Boldyrev AI (2010) A concentric planar doubly π-aromatic B19 cluster. Nat Chem 2:202–206

    Article  CAS  Google Scholar 

  96. See, for example: Buckyball boron, in Chemistry World, 2014 (August), page 6

    Google Scholar 

  97. Bould J, Dörfler U, Clegg W, Teat SJ, Thornton-Pett M, Kennedy JD (2001) Triple linking of the decaboranyl cluster. Structure of [(SMe2)2B10H10(B10H13)2] as determined by synchrotron X-ray diffraction analysis. J Chem Soc Chem Commun 2001:1788–1789

    Article  Google Scholar 

  98. Huffman JC, Moody DC, Schaeffer R (1976) Boranes. XLV. Crystal and molecular structure, improved synthesis, and reactions of tridecaborane(19). Inorg Chem 15:227–232

    Article  CAS  Google Scholar 

  99. Brewer CT, Swisher RG, Sinn E, Grimes RN (1985) Metal-promoted fusion of B6H9 . Directed synthesis and structural characterization of dodecaborane(16), B12H16. J Am Chem Soc 107:3558–3564

    Article  CAS  Google Scholar 

  100. Maynard RB, Grimes RN (1982) Oxidative fusion of carborane ligands in iron and cobalt complexes: a systematic study. J Am Chem Soc 104:5983–5986

    Article  CAS  Google Scholar 

  101. Carr MJ, Franken A, Kilner CA, Kennedy JD (2004) Macropolyhedral boron-containing cluster chemistry. Cluster assembly about a molybdenum centre. Formation of the nineteen-vertex [(CO)2MoB16H15C2Ph] anion. Dalton Trans (Dalton Commun, Hot Paper) 2004:2612–2613

    Google Scholar 

  102. Grimes RN (2011) Carborane chemistry, 2nd edn. Academic/Elsevier, Amsterdam. ISBN 978-0-12-374170-7

    Google Scholar 

  103. Jelínek T, Kennedy JD, Štíbr B, Thornton-Pett M (1995) Macropolyhedral boron-containing cluster chemistry. The eighteen-vertex monocarbaborane [(Me3CNH2)CB17H19(CN)]. J Chem Soc Chem Commun 1995:2407–2408

    Article  Google Scholar 

  104. Jelínek T, Císařová I, Štíbr B, Kennedy JD (2007) Macropolyhedral boron-containing cluster chemistry. Synthesis of the nineteen vertex monocarbaborane [9-(terBuNH2)-(anti)-{9-CB18H20}] by direct carbon-atom Aufbau. Dalton Trans (Dalton Commun) 2007:4766–4768

    Google Scholar 

  105. Plešek J, Heřmánek S, Štíbr B, Hanousek F (1967) Chemistry of Boranes. VII. A new synthesis of borane B18H22; an application of three-center bond theory on the interpretation of reaction mechanisms. Collect Czech Chem Commun 32:1095–1103

    Article  Google Scholar 

  106. Dobson J, Keller PC, Schaeffer R (1968) Boranes. XXIII. Isononaborane-15. Inorg Chem 7:399–402

    Article  CAS  Google Scholar 

  107. Li Y, Sneddon LG (2006) Improved synthetic route to n-B18H22. Inorg Chem 45:470–471

    Article  CAS  Google Scholar 

  108. Beckett MA, Crook JE, Greenwood NN, Kennedy JD (1986) Synthesis, molecular structures, and n.m.r. properties of [(PMe2Ph)PtB16H18(PMe2Ph)] and [(PMe2Ph)4Pt3B14H16], and a discussion of the bonding at platinum in these macropolyhedral platinaborane clusters. J Chem Soc Dalton Trans 1986:1879–1893

    Article  Google Scholar 

  109. Beckett MA, Greenwood NN, Kennedy JD, Salter PA, Thornton-Pett M (1986) Identification and molecular structure of the eighteen-vertex macropolyhedral diplatinaoctadecaborane [(PMe2Ph)2Pt2B16H15(C6H4Me)(PMe2Ph)]. J Chem Soc Chem Commun 1986:556–557

    Article  Google Scholar 

  110. Jelínek T, Kennedy JD, Štíbr B, Thornton-Pett M (1995) Macropolyhedral boron-containing cluster chemistry. An interesting nineteen-vertex oxaborane anion, [OB18H21]¯. J Chem Soc Chem Commun 1995:1665–1666

    Article  Google Scholar 

  111. Ouassas A, R’Kha C, Mongeot H, Frange B (1991) Reaction of B11H14NR4 (R = Et, Bu) with M2O3 (M = As, Sb, Bi) in biphasic systems. Inorg Chim Acta 180:257–261

    Article  CAS  Google Scholar 

  112. Ouassas A, Fenet B, Mongeot H, Frange B (1994) The first oxaborane species: 12-vertex-28e-nido-B11H11O. In: Kabalka G (ed) Current topics in the chemistry of boron. The Royal Society of Chemistry, Cambridge, pp 363–366. ISBN 0-85186-535-6

    Google Scholar 

  113. Ouassas A, Fenet B, Mongeot H, Frange B, Gautheron B, Barday E (1995) Oxygen in an electron-deficient borane skeleton: the oxa-nido-dodecaborate anion [OB11H12]. J Chem Soc Chem Commun 1995:1663–1664

    Article  Google Scholar 

  114. Frange B, Kennedy JD (1996) Polyhedral oxaborane chemistry. Some comparative 11B NMR shielding patterns within the twelve-vertex nido-type geometry. Main Group Met Chem 19:175–181

    Article  CAS  Google Scholar 

  115. Serra C, Ouassas A, Boutalib A, Barday E, Gautheron B, Hanquet B, Frange B (1997) New results about the oxaborane anion OB11H12 . Main Group Met Chem 20:247–254

    Google Scholar 

  116. Fontaine XLR, Fowkes H, Greenwood NN, Kennedy JD, Thornton-Pett M (1985) An unusual open twelve-vertex oxametallaborane cluster compound: synthesis and X-ray structural characterisation of [(C5Me5)RhB10OH9Cl(PMe2Ph)]. J Chem Soc Chem Commun 1985:1722–1723

    Article  Google Scholar 

  117. Ditzel EJ, Fontaine XLR, Fowkes H, Greenwood NN, Kennedy JD, MacKinnon P, Zhu S, Thornton-Pett M (1990) Oxarhodaborane chemistry. The formation of [(C5Me5)RhOB10H10-(NEt3)] and [(C5Me5)RhB9H12]2O from [(C5Me5)RhB10H13Cl]. J Chem Soc Chem Commun 1990:1692–1694

    Article  Google Scholar 

  118. Micciche RP, Brigugliio JJ, Sneddon LG (1984) Metal atom synthesis of metallaboron clusters. 5. Synthesis of the first (η6-arene)metallaborane and (η6-arene)metallaoxaborane clusters. Structural characterizations of 5-[η6-C6(CH3)3H3]FeB9H13 and 2-[η6-C6(CH3)3H3]Fe-6-OB8H10. Inorg Chem 23:3992–3999

    Article  CAS  Google Scholar 

  119. Kim Y-H, Brownless A, Cooke PA, Greatrex R, Kennedy JD, Thornton-Pett M (1998) Polyhedral oxaplatinaborane chemistry. Characterisation of [9,9-(PMe2Ph)2-arachno-9,6-PtOB8H10] and its metallaborane non-oxa cognate [6,6-(PMe2Ph)2-arachno-6-PtB9H11-9-(PMe2Ph)]. Inorg Chem Commun 1:19–22

    Google Scholar 

  120. Bould J, Bown M, Kennedy JD (2005) Polyhedral oxaruthenaborane chemistry. Characterisation of a [(η6-C6Me6)RuOB9H13] species of arachno eleven-vertex cluster character. Collect Czech Chem Commun 70:410–429

    Article  CAS  Google Scholar 

  121. Yang X, Jiao H, Schleyer PR (1997) Structures of the 12-vertex oxa- and thia-nido-dodecaborates and B13H13 2− : a theoretical DFT/GIAO/NMR investigation. Inorg Chem 36:4897–4899

    Google Scholar 

  122. Kaur P, Kennedy JD, Thornton-Pett M, Jelínek T, Štíbr B (1996) Macropolyhedral boron-containing cluster chemistry. Syn and anti [(C5Me5)2Rh2S2B15H14(OH)]; an interesting nineteen-vertex isomeric pair. J Chem Soc Dalton Trans 1996:1775–1777

    Article  Google Scholar 

  123. Kaur P, Brownless A, Perera SD, Cooke PA, Jelínek T, Kennedy JD, Thornton-Pett M, Štíbr B (1998) Macropolyhedral boron-containing cluster chemistry. Reaction of [PtMe2(PMe2Ph)2] with [9,9′-S2B16H16] to give the eighteen-vertex dithiaplatinaborane [(PMe2Ph)2PtS2B15H14(NHCOMe)]: an entry into macropolyhedral metallaheteroborane chemistry. J Organomet Chem 557:181–185

    Article  CAS  Google Scholar 

  124. Carr MJ, Londesborough MGS, Bould J, Císařová I, Kennedy JD (2005) Macropolyhedral boron-containing cluster chemistry. A metallathiaborane from S2B17H17. Isolation and characterisation of [(PMe2Ph)2PtS2B16H16]. A neo-arachno ten-vertex cluster shape, and the constitution of the [arachno-B10H15] anion. Collect Czech Chem Commun 70:430–440

    Article  CAS  Google Scholar 

  125. Carr MJ, Londesborough MGS, Hamilton McLeod AR, Kennedy JD (2006) Macropolyhedral boron-containing cluster chemistry. Metallathiaboranes from S2B17H17: isolation and characterisation of [(η6-MeC6H4 isoPr)RuS2B16H16] and [(η6-MeC6H4 isoPr)RuS2B15H15]. Dalton Trans 2006:3624–3626

    Article  CAS  Google Scholar 

  126. Shea SL, McGrath T, Jelínek T, Štíbr B, Thornton-Pett M, Kennedy JD (1998) Metallaborane reaction chemistry. Macropolyhedral metallaheteroborane synthesis by direct hetero-atom insertion. Formation of the twenty-vertex [(η5-C5Me5)IrB18H19S] anion from nineteen-vertex syn-[(η5-C5Me5)IrB18H20]. Inorg Chem Comm 1:97–100

    Article  CAS  Google Scholar 

  127. Londesborough MGS, Kilner CA, Thornton-Pett M, Kennedy JD (2002) Macropolyhedral boron-containing cluster chemistry. A novel triple-cluster structural motif. Isolation and characterization of contiguous twenty-vertex [(PPh3)4ClPd4B16H17(PPh3)2]. J Organomet Chem 657:262–266

    Article  CAS  Google Scholar 

  128. Barton L, Bould J, Kennedy JD, Rath NP (1996) Macropolyhedral boron-containing cluster chemistry. The isolation and characterisation of the eighteen-vertex nido-5′-iridaoctaborano-(3′,8′:1,2)-closo-4-iridadodecaborane [(CO)(PMe3)2IrB16H14Ir(CO)(PMe3)2]. J Chem Soc Dalton Trans 1996:3145–3149

    Article  Google Scholar 

  129. Londesborough MGS, MacLean EJ, Teat SJ, Thornton-Pett M, Kennedy JD (2005) Macropolyhedral boron-containing cluster chemistry. Synchrotron X-ray structural analysis of [(PMe2Ph)2Pd2B16H22(PMe2Ph)2] and [(PMe2Ph)3Pt2B16H20(PMe2Ph)]: Models of intermediates to more condensed metallaboranes from the [(PMe2Ph)2PtB8H12] thermolysis system. Chem Commun (‘Hot Paper’) 2005:1584–1586

    Article  CAS  Google Scholar 

  130. Londesborough MGS, MacLean EJ, Teat SJ Bould J, Kilner CA, Thornton-Pett M, Kennedy JD (2003) Macropolyhedral boron-containing cluster chemistry. Pointers towards the mechanism of homofusions of nine-vertex arachno metallaboranes. In: Bubnov Y (ed) Boron chemistry at the beginning of the 21st century. Editorial URSS, Moscow, pp 248–254. ISBN 5-9519-0019-0

    Google Scholar 

  131. Bould J, Oro LA, Macías R, Kennedy JD, Londesborough MGS (2011) A DFT and crystallographic reinvestigation of the [L2RuC2B7H9] and [L3RuC2B7H9] ‘hypercloso’ and closo systems. Polyhedron 30:2140–2145

    Article  CAS  Google Scholar 

  132. Ormsby DL, Greatrex R, Štíbr B, Kennedy JD (2000) Bond rotamers and calculated 11B NMR chemical shifts in boron-containing cluster chemistry. Some effects in the nido-{7,8,10-PC2B8} system. J Organomet Chem 614/615:61–65; with erratum (2002) J Organomet Chem 657:279

    Google Scholar 

  133. Ditzel EJ, Fontaine XLR, Greenwood NN, Kennedy JD, Thornton-Pett M (1989) Direct evidence for N → B π-donation into a polyhedral borane cluster. J Chem Soc Chem Commun 1989:1115–1116

    Article  Google Scholar 

  134. Roth M, Meyer F, Paetzold P (1997) Opening of closed azadecaboranes RNB9H9 by Amines. Collect Czech Chem Commun 62:1299–1309

    Article  CAS  Google Scholar 

  135. Kennedy JD, Štíbr B, Jelínek T, Fontaine XLR, Thornton-Pett M (1993) Eleven-vertex polyhedral dicarbaplatinaborane chemistry. Aspects of the chemistry of some closo structured {1,2,3-PtC2B8} species and some related compounds. Collect Czech Chem Commun 58:2090–2120

    Article  CAS  Google Scholar 

  136. Kim J-H, Lamrani M, Hwang J-W, Do Y-K (1997) First tetrathiolate-bridged dinuclear molybdacarbaboranes: scission and formation of the C–C cluster bond during oxidation processes. J Chem Soc Chem Commun 1997:1761

    Google Scholar 

  137. Lipscomb WN (1966) Framework rearrangement in boranes and carboranes. Science 153:373–378

    Article  CAS  Google Scholar 

  138. See, for example: Brown CA, McKee ML (2006) Rearrangements in icosahedral boranes and carboranes revisited. J Mol Model 12. doi:10.1007/s00894-006-0111-5

  139. Bould J, McInnes YM, Carr MJ, Kennedy JD (2004) Metallaborane reaction chemistry. Part 9. A facile and reversible dioxygen capture by a B-frame-supported bimetallic: structure of [(PMe2Ph)4(O2)Pt2B10H10]. Chem Commun 2004:2380–2381

    Article  CAS  Google Scholar 

  140. Bould J, Kilner CA, Kennedy JD (2005) Metallaborane Reaction Chemistry. Part 11. The capture of dioxygen, carbon monoxide and sulphur dioxide by [(PMe2Ph)4Pt2B10H10]. Dalton Trans 2005:1574–1582

    Article  CAS  Google Scholar 

  141. Bould J, Kennedy JD (2008) Metallaborane reaction chemistry. Part 13. A predicted and found tailored facile and reversible capture of SO2 by a B-frame-supported bimetallic: structures of [(PMe2Ph)2PtPd(phen)B10H10] and [(PMe2Ph)2Pt(SO2)Pd(phen)B10H10]. Chem Commun 2008:2447–2449

    Article  CAS  Google Scholar 

  142. Londesborough MGS, Hnyk D, Bould J, Serrano-Andrés L, Sauri V, Oliva JM, Kubát P, Polívka T, Lang K (2012) Distinct photophysics of the isomers of B18H22 explained. Inorg Chem 51:1471–1479

    Article  CAS  Google Scholar 

  143. Sauri V, Oliva JM, Hnyk D, Bould J, Braborec J, Merchán M, Kubát P, Císařová I, Lang K, Londesborough MGS (2013) Tuning the photophysical properties of anti-B18H22: efficient intersystem crossing between excited singlet and triplet states in new 4,4′-(HS)2-anti-B18H20. Inorg Chem 52:9266–9274

    Article  CAS  Google Scholar 

  144. Cerdán L, Braborec J, Garcia-Moreno I, Costela A, Londesborough MGS (2015) A borane laser. Nature Commun 6:5958–5964

    Google Scholar 

  145. Lipscomb WN (1980) Examples of possible polymeric borane structures. Inorg Chem 19:1415–1416

    Article  CAS  Google Scholar 

  146. Oliva JM, Rué J, Hnyk D, Kennedy JD, Rosenfeld VR (2013) Borane polyhedra as building blocks for unknown but potentially isolatable new molecules – Extensions based on computations of the known B18H22 isomers. Croat Chem Acta (D J Klein 70th Birthday Edition) 86:485–494

    Article  CAS  Google Scholar 

  147. Hnyk D, Holub J, Jelinek T, Macháček J, Londesborough MGS (2010) Revisiting B20H16 by means of a joint computational/experimental NMR approach. Collect Czech Chem Commun (B Štíbr 70th Birthday Edition) 75:1115–1123

    Article  CAS  Google Scholar 

  148. Bould J, Hnyk D, Kennedy JD, Macháček J, Oliva JM (2015) Could linear megaloboranes B(8n+4)H(4n+8) exist? Ongoing work

    Google Scholar 

  149. Friedman LB, Dobrott RD, Lipscomb WN (1963) Preparation and structure of a new boron hydride, B20H16. J Am Chem Soc 85:3505–3505

    Article  CAS  Google Scholar 

  150. Miller NE, Muetterties EL (1963) A new boron hydride, B20H16. J Am Chem Soc 85:3506–3506

    Article  CAS  Google Scholar 

  151. Miller NE, Forstner JA, Muetterties EL (1964) Chemistry of boranes. XXI. Icosaborane-16. Inorg Chem 3:1690–1694

    Article  CAS  Google Scholar 

  152. Greenwood NN, Kennedy JD, Taylorson D (1978) Mass-spectrometric evidence for icosaborane(26). J Phys Chem 82:623–625

    Article  CAS  Google Scholar 

  153. Dobrott RD, Friedman LB, Lipscomb WN (1964) Molecular and crystal structure of B20H16. J Chem Phys 40:866–872

    Article  CAS  Google Scholar 

  154. Kaur P, Perera SD, Jelínek T, Štíbr B, Kennedy JD, Clegg W, Thornton-Pett M (1997) Macropolyhedral boron-containing cluster chemistry. Isolation and characterization of the twenty-one-vertex rhenaborane [(PMe2Ph)3HReB20H15Ph(PHMe3)]. Chem Commun 1997:217–218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Kennedy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kennedy, J.D. (2015). Big Borane Assemblies, Macropolyhedral Species and Related Chemistry. In: Hnyk, D., McKee, M. (eds) Boron. Challenges and Advances in Computational Chemistry and Physics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-22282-0_6

Download citation

Publish with us

Policies and ethics