Skip to main content

Deconvoluting the Reaction Path from B10H14 Plus BH4 to B12H12 2−. Can Theory Make a Contribution?

  • Chapter
Book cover Boron

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 20))

Abstract

Reactions of boron hydrides can involve many competing pathways and intermediates. One example is the reaction of the borohydride anion BH4 with decaborane(14) B10H14 to form the dodecaborohydride dianion (B12H12 2−). Presumably, the reaction involves the addition of two BH4 anions and the elimination of five hydrogen molecules. Gas phase optimizations at the B3LYP/6-31G(d) level followed by implicit solvation modeling with CPCM (Conductor-like polarized model) are used to provide insights into the reaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Todd LJ (1970) The chemistry of polyhedral borane ions. In: Brotherton RJ, Steinberg H (eds) Progress in boron chemistry, vol 2, 1st edn. Pergamon Press, New York, pp 1–35

    Google Scholar 

  2. Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon Press, New York

    Google Scholar 

  3. King RB (2001) Three-dimensional aromaticity in polyhedral boranes and related molecules. Chem Rev 101(5):1119–1152

    Article  CAS  Google Scholar 

  4. Chen Z, King RB (2005) Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. Chem Rev 105(10):3613–3642

    Article  CAS  Google Scholar 

  5. Fox MA, Wade K (2003) Evolving patterns in boron cluster chemistry. Pure Appl Chem 75(9):1315–1323

    Article  CAS  Google Scholar 

  6. Grimes RN (2004) Boron clusters come of age. J Chem Educ 81(5):658–672

    Article  Google Scholar 

  7. Shameema O, Jemmis ED (2011) Computational studies: boranes. In: Solomon EI, Scott RA, King RB (eds) Encyclopedia of inorganic and bioinorganic chemistry. Wiley, Chichester, pp 539–550

    Google Scholar 

  8. Workman DB, Squires RR (1988) Hydride binding energies of boranes. Inorg Chem 27(11):1846–1848

    Article  CAS  Google Scholar 

  9. McKee ML (1990) Estimation of heats of formation of boron hydrides from ab initio energies. J Phys Chem 94(1):435–440

    Article  CAS  Google Scholar 

  10. McKee ML (1994) AB initio study of nine- and ten-vertex nido and arachno boranes and heteroboranes. Inorg Chem 33(26):6213–6218

    Article  CAS  Google Scholar 

  11. Cheng MF, Ho HO, Lam CS, Li WK (2002) Heats of formation for the boron hydrides: a Gaussian-3 study. Chem Phys Lett 356(1):109–119

    Article  CAS  Google Scholar 

  12. Dixon DA, Gutowski MJ (2005) Thermodynamic properties of molecular borane amines and the [BH4 -][NH4 +] salt for chemical hydrogen storage systems from ab initio electronic structure theory. J Phys Chem A 109(23):5129–5135

    Article  CAS  Google Scholar 

  13. Nguyen MT, Matus MH, Dixon DA (2007) Heats of formation of boron hydride anions and dianions and their ammonium salts [BnHm y−][NH4 +]y with y = 1-2. Inorg Chem 46(18):7561–7570

    Google Scholar 

  14. Greenwood NN, Greatrex R (1987) Kinetics and mechanism of the thermolysis and photolysis of binary boranes. Pure & App Chem 59(7):857–868

    Article  CAS  Google Scholar 

  15. McKee ML (1990) Theoretical study of hydrogen (H2) elimination from boron hydrides B4H10, B5H11, and B6H12 and of boron trihydride (BH3) elimination from B4H10. J Am Chem Soc 112(19):6753–6759

    Article  CAS  Google Scholar 

  16. McKee ML (1996) Theoretical study of the reaction of acetylene with B4H8. A proposed mechanism of carborane formation. 2. J Am Chem Soc 118(2):421–428

    Article  CAS  Google Scholar 

  17. McKee ML (1988) Ab initio study of the mechanisms of rearrangements in C2B4H6 and C2B5H7. J Am Chem Soc 110(16):5317–5321

    Article  CAS  Google Scholar 

  18. Sayin H, McKee ML (2007) Carboranes and baskets from reaction of B4H10 with allene. Inorg Chem 46(7):2883–2891

    Article  CAS  Google Scholar 

  19. Wales DJ (2005) Electronic structure of clusters. In: King RB (ed) Encyclopedia of inorganic chemistry, 2nd edn. Wiley, Chichester, pp 1506–1525

    Google Scholar 

  20. Sugden IJ, Plant DF, Bell RG (2013) Thermal rearrangement mechanisms in icosahedral carboranes and metallocarboranes. Chem Commun 49:975–977

    Article  CAS  Google Scholar 

  21. McKay D, Macgregor SA, Welch AJ (2015) Isomerisation of nido-[C2B10H12]2− dianions: unprecedented rearrangements and new structural motifs in carborane cluster chemistry. Chem Sci 6:3117–3128

    Article  CAS  Google Scholar 

  22. Dunks GB, Barker K, Hedaya E, Hefner C, Palmer-Ordonez K, Remec P (1981) Simplified synthesis of B10H14 from NaBH4 via B11H14 Ion. Inorg Chem 20(6):1692–1697

    Article  CAS  Google Scholar 

  23. Sivaev IB, Bregadze VI, Sjöberg S (2002) Chemistry of closo-dodecaborate anion [B12H12]2−: a review. Collect Czech Chem C 67:679–727

    Article  CAS  Google Scholar 

  24. Volkov O (1999) Undecaborates M2[B11H11]: facile synthesis, crystal structure, and reactions. Z Anorg Allg Chem 625:1193–1201

    Article  CAS  Google Scholar 

  25. Miller HC, Miller NE, Muetterties EL (1964) Chemistry of boranes. XX. Syntheses of polyhedral boranes. Inorg Chem 3(10):1456–1463

    Article  CAS  Google Scholar 

  26. He L, Li HW, Hwang SJ, Akiba E (2014) Facile solvent-free synthesis of anhydrous alkali metal dodecaborate M2B12H12 (M = Li, Na, K). J Phys Chem C 118(12):6084–6089

    Article  CAS  Google Scholar 

  27. Bakardjiev M, Štíbr B, Holub J, Padělková Z, Růži ka A (2015) Simple synthesis, halogenation, and rearrangement of closo-1,6-C2B8H10. Organometallics 34(2):450–450

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09, Revision A.2. Gaussian, Inc., Wallingford

    Google Scholar 

  29. Lee TB, McKee ML (2011) Dissolution thermochemistry of alkali metal dianion salts (M2X1, M = Li+, Na+, and K+ with X = CO3 2 , SO4 2−, C8H8 2 , and B12H12 2−). Inorg Chem 50(22):11412–11422

    Google Scholar 

  30. Lee TB, McKee ML (2012) Redox energetics of hypercloso boron hydrides BnHn (n = 6–13) and B12X12 (X = F, Cl, OH, and CH3). Inorg Chem 51(7):4205–4214

    Google Scholar 

  31. Kochnev VK, Avdeeva VV, Malinina EA, Kuznetsov NT (2013) Theoretical study of dodecahydro-closo-decaborane B10H12, the diprotonated boron cluster B10H10 2−. Russ J Inorg Chem 58(7):793–799

    Google Scholar 

  32. Kochnev VK, Avdeeva VV, Goeva LV, Malinina EA, Kuznetsov NT (2014) Theoretical study of molecular hydrogen elimination from the undecahydrodecaborate monoanion [B10H11]. Exopolyhedral substitution intermediates: [B10H9] monoanion and neutral [B10H10] cluster. Russ J Inorg Chem 59(7):706–712

    Article  CAS  Google Scholar 

  33. Adams RM, Siedle AR, Grant J (1964) Convenient preparation of the dodecahydrododecaborate Ion. Inorg Chem 3(3):461

    Article  CAS  Google Scholar 

  34. Gaines DF, Bridges AN, Hayashi RK (1994) Synthesis of nido-B11H14 and alkyl derivatives via systematic cage enlargement of the decaborane(14) system: crystal structure of 7-Thx-B11H13 . Inorg Chem 33(7):1243–1244

    Google Scholar 

  35. Maitre P, Eisenstein O, Michos D, Luo XL, Siedle AR, Wisnieski L, Zilm KW, Crabtree RH (1993) Borate anion (B11H14 ): a nido cage with No H…H interaction. J Am Chem Soc 115(17):7747–7751

    Article  CAS  Google Scholar 

  36. Kiani FA, Hofmann M (2004) Structural increment system for 11-vertex nido-boranes and carboranes. Inorg Chem 43(26):8561–8571

    Article  CAS  Google Scholar 

  37. Volkov O, Radacki K, Thomas RL, Rath NP, Barton LJ (2005) A new look at the nido-undecaborate system. J Organomet Chem 690(11):2736–2744

    Article  CAS  Google Scholar 

  38. Volkov O, Paetzold P (2003) The chemistry of the undecaborates. J Organomet Chem 680(1-2):301–311

    Article  CAS  Google Scholar 

  39. Titov LV, Gavrilova LA, Petrovskii PV (2008) Synthesis and some properties of Nd(B11H14)3.4Dg (Dg is diglyme). Russ J Inorg Chem 53(4):565–567

    Article  Google Scholar 

  40. Volkov O, Radacki K, Paetzold P, Zheng X (2001) Dodecahydro-closo-undecaborate [B11H12]. Z Anorg Allg Chem 627(6):1185–1191

    Article  CAS  Google Scholar 

  41. Smith DE, Rupp EB, Shriver DF (1967) The mechanisms of electrolytic reduction for decaborane (14), B10H14, in an aprotic solvent. II. The second reduction step and the reduction step and the reduction of decaborane (13)ate (-1), B10H13 -1a. J Am Chem Soc 89(22):5568–5573

    Article  CAS  Google Scholar 

  42. Graybill BM, Pitochelli AR, Hawthorne MF (1962) The preparation and reactions of B10H13 (ligand) anions. Inorg Chem 1(3):622–626

    Article  CAS  Google Scholar 

  43. Yoon CW, Kusari U, Sneddon LG (2008) Computational studies of the reactions of B10H13 with alkynes and olefins: pathways for dehydrogenative alkyne-insertion and olefin-hydroboration reactions. Inorg Chem 47(20):9216–9227

    Article  CAS  Google Scholar 

  44. Sneddon LG, Huffman JC, Schaeffer RO, Streib WE (1972) Structure of the B10H13 Ion. J Chem Soc Chem Commun 474–475

    Google Scholar 

  45. Shore SG, Hamilton EJM, Bridges AN, Bausch J, Krause-Bauer JA, Dou D, Liu J, Liu S, Du B, Hall H, Meyers EA, Vermillion KE (2003) The solid state structure of [B10H11] and its dynamic NMR spectra in solution. Inorg Chem 42(4):1175–1186

    Article  CAS  Google Scholar 

  46. Kochnev VK, Avdeeva VV, Goeva LV, Malinina EA, Kuznetsov NT (2012) The undecahydrodecaborate anion B10H11 as the starting reagent in exopolyhedral substitution and complexation: theoretical and experimental prerequisites. Russ J Inorg Chem 57(3):331–336

    Article  CAS  Google Scholar 

  47. Bridges AN, Gaines DF (1995) The dianion of decaborane(14), nido-dodecahydrodecaborate (2-), [B10H12 2−] and its solution behavior. Inorg Chem 34(18):4523–4524

    Article  CAS  Google Scholar 

  48. Hofmann M, Schleyer PR (1998) Structures of arachno- and hypho-B10 clusters and stability of their possible Lewis base adducts ([B10H12]2-, [B10H12.L]2-, [B10H12.2L]2-, [B10H13], [B10H13.L], [B10H12.2L]). an ab initio/IGLO/NMR investigation. Inorg Chem 37(21):5557–5565

    Article  CAS  Google Scholar 

  49. McKee ML, Wang ZX, Schleyer PR (2000) Ab initio study of the hypercloso boron hydrides BnHn and BnHn . Exceptional stability of neutral B13H13. J Am Chem Soc 122(19):4781–4793

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Alabama Supercomputer Center is acknowledged for a generous allocation of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. McKee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McKee, M.L. (2015). Deconvoluting the Reaction Path from B10H14 Plus BH4 to B12H12 2−. Can Theory Make a Contribution?. In: Hnyk, D., McKee, M. (eds) Boron. Challenges and Advances in Computational Chemistry and Physics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-22282-0_5

Download citation

Publish with us

Policies and ethics