Skip to main content
Book cover

Boron pp 97–119Cite as

Quantum Chemistry of Excited States in Polyhedral Boranes

  • Chapter

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 20))

Abstract

In this Chapter we describe the electronic structure of ground states and excited states of the two isomers of octadecaborane (22), anti- and syn-B18H22, and the new derivative of anti-B18H22, the polyhedral substituted borane 4,4′-(HS)2-anti-B18H20. A theoretical interpretation is given on the fluorescence of the anti-B18H22 isomer, and the non-radiative decay of the syn-B18H22 isomer, an unsolved problem since 1962. For the new derivative of anti-B18H22, substitution of hydrogen atoms in positions 4 and 4′ by SH groups allows the tuning of the photophysical properties in 4,4′-(HS)2-anti-B18H20, facilitating intersystem crossing from the excited singlet state to the triplet state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See, for instance, the computational package Gaussian-09 [34].

References

  1. Schrödinger E (1926) Quantisierung als Eigenwertproblem. Ann Phys (Berlin) 384:361–376

    Article  Google Scholar 

  2. Schrödinger E (1982) Collected papers on wave mechanics, 3rd edn. Chelsea Publication Company, New York

    Google Scholar 

  3. Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part I – Theory and methods. Proc Cambridge Phil Soc 24:89–110

    Article  CAS  Google Scholar 

  4. Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part II – Results and discussion. Proc Cambridge Phil Soc 24:111–132

    Article  CAS  Google Scholar 

  5. Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part III – Term values and intensities. Proc Cambridge Phil Soc 24:426–437

    Article  CAS  Google Scholar 

  6. Hartree DR (1929) The wave mechanics of an atom with a non-coulomb central field. Part IV – Further results relating to terms of the optical spectrum. Proc Cambridge Phil Soc 25:310–314

    Article  CAS  Google Scholar 

  7. Fock V (1930) Nähenungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z Phys 61:126–148

    Article  Google Scholar 

  8. Fock V (1930) “Selfconsistent field” mit Austausch für Natrium. Z Phys 62:795–805

    Article  CAS  Google Scholar 

  9. Slater JC (1960) Quantum theory of atomic structure. McGraw-Hill, New York

    Google Scholar 

  10. Roothaan CCJ (1951) New developments in molecular orbital theory. Rev Mod Phys 23:69–89

    Article  CAS  Google Scholar 

  11. Hall GG (1951) The molecular orbital theory of chemical valency. VIII. A method of calculating ionization potentials. Proc Roy Soc A205:541–552

    Article  Google Scholar 

  12. Pople JA, Nesbet RK (1954) Self‐consistent orbitals for radicals. J Chem Phys 22:571–572

    Article  CAS  Google Scholar 

  13. Roothaan CCJ (1960) Self-consistent field theory for open shells of electronic systems. Rev Mod Phys 32:179–185

    Article  Google Scholar 

  14. Heitler W, London F (1927) Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Z Phys 44:455–472

    Article  CAS  Google Scholar 

  15. Coulson CA, Fischer I (1949) Notes on the molecular orbital treatment of the hydrogen molecule. Phil Mag 40:386–393

    Article  CAS  Google Scholar 

  16. Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  17. van Lenthe JH, Balint-Kurti GG (1983) The valence bond self-consistent field (VBSCF) method. J Chem Phys 78:5699–5713

    Article  Google Scholar 

  18. Gerratt J, Cooper DL, Karadakov PB, Raimondi M (1997) Modern valence bond theory. Chem Soc Rev 26:87–100

    Article  CAS  Google Scholar 

  19. Shaik S, Hiberty PC (2004) Valence bond theory, its history, fundamentals, and applications. A primer. Rev Comput Chem 20:1–100

    CAS  Google Scholar 

  20. Čížek J (1966) On the correlation problem in atomic and molecular systems. calculation of wavefunction components in Ursell‐type expansion using quantum‐field theoretical methods. J Chem Phys 45:4256–4266

    Article  Google Scholar 

  21. Čížek J (1966) On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Adv Chem Phys 14:35–89

    Google Scholar 

  22. Bartlett RJ (1981) Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu Rev Phys Chem 32:359–451

    Article  CAS  Google Scholar 

  23. Paldus J (1981) Diagrammatic methods for many-Fermion systems (Lecture Notes ed.). University of Nijmegen, Njimegen, The Netherlands

    Google Scholar 

  24. Paldus J (2005) The beginnings of coupled-cluster theory: An eyewitness account. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier B.V, Amsterdam, pp 115–147

    Google Scholar 

  25. Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics. Cambridge Molecular Science, Cambridge

    Book  Google Scholar 

  26. Sherrill CD, Schaefer III HF (1999) The configuration interaction method: advances in highly correlated approaches. In: Löwdin PO (ed) Advances in Quantum Chemistry, vol 34. Academic, San Diego, pp 143–269

    Google Scholar 

  27. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  28. Bartlett RJ, Silver DM (1976) Many‐body perturbation theory applied to electron pair correlation energies. II. Closed‐shell second‐row diatomic hydrides. J Chem Phys 64:4578–4586

    Article  CAS  Google Scholar 

  29. Bartlett RJ, Shavitt I (1977) Comparison of high-order many-body perturbation theory and configuration interaction for H2O. Chem Phys Lett 50:190–198

    Article  CAS  Google Scholar 

  30. Krishnan R, Frisch MJ, Pople JA (1980) Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory. J Chem Phys 72:4244–4245

    Article  CAS  Google Scholar 

  31. Wilson S (1984) Electron correlation in molecules. Clarendon, Oxford

    Google Scholar 

  32. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  33. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg, JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant, JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian-09. Gaussian, Inc., Wallingford CT

    Google Scholar 

  35. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  36. Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU (eds) (2006) Time-dependent density functional theory. Springer, Berlin Heidelberg

    Google Scholar 

  37. Klessinger M, Michl J (1995) Excited states and photochemistry of organic molecules. Wiley-VCH, New York

    Google Scholar 

  38. Ramamurthy V, Schanze KS (1998) Organic and inorganic photochemistry. Marcel Dekker, New York

    Google Scholar 

  39. Armstrong DR, Perkins PG, Stewart JJP (1973) Calculation of the electronic structure of boranes by the self-consistent molecular orbital method. Part III. Excited states of cage species. J Chem Soc Dalton Trans 21:2277–2280

    Article  Google Scholar 

  40. Kunkely H, Vogler A (2005) Luminescence of silver 7, 8, 9, 10, 11, 12-hexabromo-closo-1-carbododecaborate. Inorg Chem Commun 8:992–993

    Article  CAS  Google Scholar 

  41. Kunkely H, Vogler A (2007) Excited state properties of Tl2B12H12. Metal-centered photoluminescence. Inor Chim Acta 360:679–680

    Article  CAS  Google Scholar 

  42. Kwon S, Wee K, Cho Y-J et al (2014) Carborane dyads for photoinduced electron transfer: Photophysical studies on carbazole and phenyl-o-carborane molecular assemblies. Chem Eur J 20:5953–5960

    Article  CAS  Google Scholar 

  43. Weber L, Kahlert J, Brockhinke R et al (2012) Luminescence properties of C-diazaborolyl-ortho-carboranes as donor-acceptor systems. Chem Eur J 18:8347–8357

    Article  CAS  Google Scholar 

  44. Wee K-R, Cho Y-J, Song J-K et al (2013) Multiple photoluminescence from 1, 2-dinaphthyl-ortho-carborane. Angew Chem Int Ed 52:9682–9685

    Article  CAS  Google Scholar 

  45. Base K, Grinstaff MW (1998) Generation of an unprecedented excited state oxidant in a coordinately unsaturated platinum complex. Inorg Chem 37:1432–1433

    Article  CAS  Google Scholar 

  46. Hong E, Yang H, Kim Y, Jeoung SC, Do Y (2001) Mechano- and electroluminescence of a dissymmetric Hafnium carborane complex. Adv Mater 13:1094–1096

    Article  CAS  Google Scholar 

  47. Calhorda MJ, Crespo O, Gimeno MC, Jones PG, Laguna A, López-de-Luzuriaga JM, Perez JL, Ramon MA, Veiros LF (2000) Synthesis, structure, luminescence and theoretical studies of tetranuclear Gold clusters with phosphinocarborane ligands. Inorg Chem 39:4280–4285

    Article  CAS  Google Scholar 

  48. Crespo O, Gimeno MC, Jones PG, Laguna A, López-de-Luzuriaga JM, Monge M, Perez JL, Ramon MA (2003) Luminescent nido-carborane-diphosphine anions [(PR2)2C2B9H10] (R = Ph, iPr). Modification of their luminescence properties upon formation of three-coordinate Gold(I) complexes. Inorg Chem 42:2061–2068

    Article  CAS  Google Scholar 

  49. Bae H-J, Chung J, Kim H et al (2014) Deep red phosphorescence of cyclometalated iridium complexes by o-carborane substitution. Inorg Chem 53:128–138

    Article  CAS  Google Scholar 

  50. Oliva JM, Serrano-Andrés L (2006) A computational study of the lowest singlet and triplet states of neutral and dianionic 1,2-substituted icosahedral and octahedral o-carboranes. J Comput Chem 27:524–535

    Article  CAS  Google Scholar 

  51. Serrano-Andrés L, Oliva JM (2006) Photochemical window mechanism for controlled atom release in carborane endohedral boxes: theoretical evidence. Chem Phys Lett 432:235–239

    Article  Google Scholar 

  52. Serrano-Andrés L, Klein DJ, Schleyer PR, Oliva JM (2008) What electronic structures and geometries of carborane mono- and ortho-, meta-, and para-diradicals are preferred? J Chem Theory Comput 4:1338–1347

    Article  Google Scholar 

  53. Oliva JM, Klein DJ, Schleyer PR, Serrano-Andrés L (2009) Design of carborane molecular architectures with electronic structure computations: From endohedral and polyradical systems to multidimensional networks. Pure Appl Chem 81:719–729

    Article  CAS  Google Scholar 

  54. Oliva JM, Serrano-Andrés L, Havlas Z, Michl J (2009) On the electronic structure of a dianion, a radical anion, and a neutral biradical (HB)11C-C≡C-C(BH)11 carborane dimer. J Mol Struct – THEOCHEM 912:13–20

    Article  CAS  Google Scholar 

  55. Crespo O, Gimeno MC, Laguna A, Ospino I, Aullón G, Oliva JM (2009) Organometallic gold complexes of carborane. Theoretical comparative analysis of ortho, meta and para derivatives and luminescence studies. Dalton Trans 19:3807–3813

    Article  Google Scholar 

  56. Oliva JM (2012) Energy landscapes in boron chemistry: Bottom-top approach towards design of novel molecular architectures. Adv Quantum Chem 64:105–119

    Article  CAS  Google Scholar 

  57. Oliva JM, Alcoba DR, Lain L, Torre A (2013) Electronic structure studies of diradicals derived from closo-carboranes. Theor Chem Acc 132(1–6):1329

    Article  Google Scholar 

  58. Oliva JM, Alcoba DR, Oña OB, Torre A, Lain L, Michl J (2015) Toward (car)borane-based molecular magnets. Theor Chem Acc 134:9. 8 p

    Google Scholar 

  59. Londesborough MGS, Hnyk D, Bould J et al (2012) Distinct photophysics of the isomers of B18H22 explained. Inorg Chem 51:1471–1479

    Article  CAS  Google Scholar 

  60. Saurí V, Oliva JM, Hnyk D et al (2013) Tuning the photophysical properties of anti-B18H22: efficient intersystem crossing between excited singlet and triplet states in new 4,4′-(HS)2-anti-B18H20. Inorg Chem 52:9266–9274

    Google Scholar 

  61. Vicenta Saurí Peris (2013) Theoretical study of the molecular bases that control photochemical processes with biological and nanotechnological interest. PhD Thesis, Universitat de València

    Google Scholar 

  62. Cerdán L, Braborec J, Garcia-Moreno I, Costela A, Londesborough MGS (2015) A borane laser. Nature Commun 6:5958. 7 p

    Google Scholar 

  63. Hosmane NS (2011) Boron science. CRC Press, Boca Raton

    Book  Google Scholar 

  64. Sibaev IB, Bregadze VI (2009) Polyhedral boron hydrides in use: current status and perspectives. Nova Science, New York

    Google Scholar 

  65. Sibaev IB, Bregadze VI (2009) Polyhedral boranes for medical applications: current status and perspectives. Eur J Inorg Chem 1433–1450

    Google Scholar 

  66. Hosmane NS, Maguire JA, Zhu Y, Takagaki M (2011) Boron and gadolinium neutron capture therapy for cancer treatment. World Scientific, Singapore

    Google Scholar 

  67. Grimes RN (2011) Carboranes, 2nd edn. Academic, London

    Google Scholar 

  68. Goddard WA III, Brenner DW, Lyshevski SE, Iafrate GJ (2003) Handbook of nanoscience, engineering and technology. CRC Pres, Boca Ratón

    Google Scholar 

  69. Pichierri F (2007) Polyhedral heteroborane clusters for nanotechnology. In: Mansoori GA, George TF, Assoufid L, Zhang G (eds) Molecular Building Blocks for Nanotechnology. Top Appl Phys 109:256–274

    Google Scholar 

  70. Fanfrlík J, Přáda A, Padělková Z, Pecina A, Macháček J, Lepšík M, Holub J, Růžička A, Hnyk D, Hobza P (2014) The dominant role of chalcogen bonding in the crystal packing of 2D/3D aromatics. Angew Chem Int Ed 53:10139–10142

    Article  Google Scholar 

  71. Kennedy DC, Duguay DR, Tay LL, Richeson DR, Pezacki JP (2007) SERS detection and boron delivery to cancer cells using carborane labelled nanoparticles. Chem Commun 6750–6752

    Google Scholar 

  72. Barry NPE, Pitto-Barry A, Romero-Canelón I, Tran J, Soldevila-Barreda JJ, Hands-Portman I, Smith CJ, Kirby N, Dove AP, O’Reilly RK, Sadler PJ (2014) Precious metal carborane polymer nanoparticles: characterization of micellar formulations and anticancer activity. Faraday Discuss 175:229–240

    Article  CAS  Google Scholar 

  73. Serrano-Andrés L, Merchán M (2004) Spectroscopy: applications. In: Schleyer PR et al (eds) Encyclopedia of computational chemistry. Wiley, Chichester

    Google Scholar 

  74. Serrano-Andrés L, Merchán M (2008) Photostability and photoreactivity in biomolecules: Quantum chemistry of nucleic acid base monomers and dimers. In: Shukla MK, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acid: a comprehensive theoretical and experimental analysis. Chapter 16:435–472. Springer, The Netherlands

    Google Scholar 

  75. Serrano-Andrés L, Roca-Sanjuán D, Olaso-González G (2011) Recent trends in computational photochemistry. In: Albini A (ed) Photochemistry, vol 38, Series: specialist periodical reports. Royal Society, London, pp 10–36

    Chapter  Google Scholar 

  76. González L, Escudero D, Serrano-Andrés L (2012) Progress and challenges in the calculation of electronic excited states. Chem Phys Chem 13:28–51

    Google Scholar 

  77. Serrano-Andrés L, Serrano-Pérez JJ (2012) Calculation of excited states: molecular photophysics and photochemistry on display. In: Handbook of computational chemistry. Springer, Berlin, pp 483–560

    Chapter  Google Scholar 

  78. Giussani A, Segarra-Martí J, Roca-Sanjuán D, Merchán M (2015) Excitation of nucleobases from a computational perspective I: Reaction paths. Top Curr Chem 355:57–98

    Article  Google Scholar 

  79. Roca-Sanjuán D, Fernández Galván I, Lindh R, Liu YJ (2015) Recent method developments and applications in computational photochemistry, chemiluminescence, and bioluminescence. In: Albini A (ed) Photochemistry, vol 42, Series: specialist periodical reports. Royal Society, London, pp 11–42

    Google Scholar 

  80. Teller E (1973) The crossing of potential surfaces. J Phys Chem 41:109–116

    Article  Google Scholar 

  81. Herzberg G, Longuet-Higgins LC (1963) Intersection of potential energy surfaces in polyatomic molecules. Faraday Discuss 35:77–82

    Article  Google Scholar 

  82. Robb MA, Bernardi F, Olivucci M (1996) Conical intersections as a mechanistic feature of organic-photochemistry. Pure Appl Chem 67:783–789

    Google Scholar 

  83. Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections: Electronic structure, dynamics, and spectroscopy. World Scientific, Singapore

    Google Scholar 

  84. Bearpark MJ, Robb MA (2007) Conical intersection species as reactive intermediates. Wiley, Hoboken

    Book  Google Scholar 

  85. Garavelli M, Bernardi F, Cembran A (2005) In: Olivucci M (ed) Theoretical and computational chemistry. Elsevier, Amsterdam, p 191

    Google Scholar 

  86. Michl J (2005) Foreword. In: Olivucci M (ed) Computational photochemistry. Elsevier, Amsterdam, p ix

    Google Scholar 

  87. Serrano-Andrés L, Merchán M (2005) Quantum chemistry of the excited state. J Mol Struc – Theochem 729:109–118

    Article  Google Scholar 

  88. Roos BO, Andersson K, Fülscher MP, Malmqvist PA, Serrano-Andrés L, Pierloot K, Merchán M (1996). New methods in computational quantum mechanics. In: Prigogine I, Rice S (eds) Multiconfigurational perturbation theory – applications in electronic spectroscopy. Adv Chem Phys 93:219–331. John Wiley, New York

    Google Scholar 

  89. Merchán M, Serrano-Andrés L (2005) Ab initio methods for excited states. In: Olivucci M (ed) Computational photochemistry. Elsevier, Amsterdam

    Google Scholar 

  90. Gozem S, Krylov AI, Olivucci M (2013) Conical intersection and potential energy surface features of a model retinal chromophore: Comparison of EOM-CC and multireference methods. J Chem Theory Comput 9:284–292

    Article  CAS  Google Scholar 

  91. Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94:5483–5488

    Article  CAS  Google Scholar 

  92. Andersson K, Malmqvist PÅ, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218–1226

    Article  CAS  Google Scholar 

  93. Roca-Sanjuán D, Aquilante F, Lindh R (2012) Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. Wiley Interdisciplinary Reviews. Comput Mol Sci 2:585–603

    Article  Google Scholar 

  94. Ghigo G, Roos BO, Malmqvist PÅ (2004) A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett 396:142–149

    Article  CAS  Google Scholar 

  95. Forsberg N, Malmqvist PÅ (1997) Multiconfiguration perturbation theory with imaginary level shift. Chem Phys Lett 274:196–204

    Article  CAS  Google Scholar 

  96. Finley J, Malmqvist PÅ, Roos BO, Serrano-Andrés L (1998) The multi-state CASPT2 method. Chem Phys Lett 288:299–306

    Article  CAS  Google Scholar 

  97. Serrano-Andrés L, Merchán M, Lindh R (2005) Computation of conical intersections by using perturbation techniques. J Chem Phys 122:104107-1-10

    Google Scholar 

Download references

Acknowledgements

We are grateful to Thomas Schmalz (Texas A&M University at Galveston, USA) for reading the manuscript. This research was supported by Projects CTQ2014-58624-P of the Spanish MEC/FEDER, GV2015-057 of the Generalitat Valenciana, and i-COOP-2013-B20040 from the Spanish National Research Council (CSIC). D.R.-S. thanks the “Juan de la Cierva” program of the Spanish MINECO (Ref. JCI-2012-13431). A.F.-M. thanks BES-2011-048326 FPI grant (MINECO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Oliva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oliva, J.M., Francés-Monerris, A., Roca-Sanjuán, D. (2015). Quantum Chemistry of Excited States in Polyhedral Boranes. In: Hnyk, D., McKee, M. (eds) Boron. Challenges and Advances in Computational Chemistry and Physics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-22282-0_4

Download citation

Publish with us

Policies and ethics