Boron pp 49-95 | Cite as

Computational Studies of Metallaboranes and Metallacarboranes

  • Alexandru Lupan
  • R. Bruce KingEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 20)


Computations based on quantum chemistry, particularly density functional theory methods, have provided valuable insights into the structure, bonding, thermochemistry, and chemical reactivity of diverse polyhedral metallaboranes. Examples of such computations are provided for metallaboranes having central polyhedra with five to 16 vertices.


  1. 1.
    Williams RE (1971) Carboranes and boranes; polyhedra and polyhedral fragments. Inorg Chem 10:210–214CrossRefGoogle Scholar
  2. 2.
    Williams RE (1992) The polyborane, carborane, carbocation continuum: architectural patterns. Chem Rev 92:177–207CrossRefGoogle Scholar
  3. 3.
    King RB, Duijvestijn AJW (1990) The topological uniqueness of the deltahedra found in the boranes BnHn 2− (6≤n≤12). Inorg Chim Acta 178:55–57CrossRefGoogle Scholar
  4. 4.
    Wade K (1971) The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. Chem Commun 792–793Google Scholar
  5. 5.
    Mingos DMP (1972) Skeletal electron counting in cluster and ring compounds. Nat Phys Sci 236:99–102CrossRefGoogle Scholar
  6. 6.
    Mingos DMP (1984) Polyhedral skeletal electron pair approach. Acc Chem Res 17:311–319CrossRefGoogle Scholar
  7. 7.
    Aihara J (1978) Three-dimensional aromaticity of polyhedral boranes. J Am Chem Soc 100:3339–3342CrossRefGoogle Scholar
  8. 8.
    King RB, Rouvray DH (1977) Chemical applications of group theory and topology. 7. A graph-theoretical interpretation of the bonding topology in polyhedral boranes, carboranes, and metal clusters. J Am Chem Soc 99:7834–7840CrossRefGoogle Scholar
  9. 9.
    King RB (2001) Three-dimensional aromaticity in polyhedral boranes and related molecules. Chem Rev 101:1119–1152CrossRefGoogle Scholar
  10. 10.
    Callahan KP, Hawthorne MF (1976) Ten years of metallocarboranes. Adv Organomet Chem 14:145–186Google Scholar
  11. 11.
    Grimes RN (1983) Role of metals in borane clusters. Acc Chem Res 16:22–26CrossRefGoogle Scholar
  12. 12.
    Bould J, Kennedy JD, Thornton-Pett M (1992) Ten-vertex metallaborane chemistry. Aspects of the iridadecaborane closoisonidoisocloso structural continuum. J Chem Soc Dalton Trans 563–576Google Scholar
  13. 13.
    Kennedy JD, Štibr B (1994) Polyhedral Metallaborane and Metallaheteroborane Chemistry. Aspects of Cluster Flexibility and Cluster Fluxionality. In: Kabalka GW (ed) Current topics in the chemistry of boron. Royal Society of Chemistry, Cambridge, pp 285–292Google Scholar
  14. 14.
    Kennedy JD (1998) Ch. 3. Disobedient Skeletons. In: Casanova J (ed) The borane-carborane-carbocation continuum. Wiley, New York, pp 85–116Google Scholar
  15. 15.
    Štibr B, Kennedy JD, Drdáková E, Thornton-Pett M (1994) Nine-vertex polyhedral iridamonocarbaborane chemistry. Products of thermolysis of [(CO)(PPh3)2IrCB7H8] and emerging alternative cluster-geometry patterns. J Chem Soc Dalton Trans 229–236Google Scholar
  16. 16.
    Kennedy JD (1986) Structure and bonding in recently isolated metallaboranes. Inorg Chem 25:111–112CrossRefGoogle Scholar
  17. 17.
    Baker RT (1986) Hyper-closo metallaboranes. Inorg Chem 25:109–111CrossRefGoogle Scholar
  18. 18.
    Johnston RL, Mingos DMP (1986) Molecular orbital calculations relevant to the hypercloso vs. iso-closo controversy in metallaboranes. Inorg Chem 25:3321–3323CrossRefGoogle Scholar
  19. 19.
    Johnston RL, Mingos DMP, Sherwood P (1991) Bonding and electron counting in hypercloso metalloboranes and metallocarboranes. New J Chem 15:831–841Google Scholar
  20. 20.
    For a review of much of the relevant chemistry from Fehlner’s group see Fehlner TP (2002) Metallaboranes of the earlier transition metals: relevance to the cluster electron counting rules. In: Shapiro PJ, Atwood DA (ed) Group 13 chemistry: from fundamentals to applications. American Chemical Society, Washington DC, pp 49–67Google Scholar
  21. 21.
    Ghosh S, Shang M, Li Y, Fehlner TP (2001) Synthesis of [(Cp*Re)2BnHn] n = 8–10: metal boride particles that stretch the cluster structure paradigms. Angew Chem Int Ed 40:1125–1128CrossRefGoogle Scholar
  22. 22.
    Wadepohl H (2002) Hypoelectronic dimetallaboranes. Angew Chem Int Ed 41:4220–4223CrossRefGoogle Scholar
  23. 23.
    Le Guennic B, Jiao H, Kahlal S, Saillard J-Y, Halet J-F, Ghosh S, Shang M, Beatty AM, Rheingold AL, Fehlner TP (2004) Synthesis and characterization of hypoelectronic rhenaboranes. Analysis of the geometric and electronic structures of species following neither borane nor metal cluster electron-counting paradigms. J Am Chem Soc 126:3203–3217CrossRefGoogle Scholar
  24. 24.
    Farràs P, Juárez-Pérez EJ, Lepšík M, Luque R, Núñez R, Teixidor F (2012) Metallacarboranes and their interactions: theoretical insights and their applicability. Chem Soc Rev 41:3445–3463CrossRefGoogle Scholar
  25. 25.
    Roy DK, Ghosh S, Halet J-F (2014) Beyond the icosahedron: the quest for high-nuclearity supraicosahedral metallaboranes. J Clust Sci 25:225–237CrossRefGoogle Scholar
  26. 26.
    Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  27. 27.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  28. 28.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  29. 29.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  30. 30.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  31. 31.
    Lenthe E, Baerends EJ, Snijders JG (1993) Relativistic regular two component Hamiltonians. J Chem Phys 99:4597–4610CrossRefGoogle Scholar
  32. 32.
    Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  33. 33.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  34. 34.
    Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509CrossRefGoogle Scholar
  35. 35.
    Schleyer PR, Najafian K (1998) Stability and three-dimensional aromaticity of closo-monocarbaborane anions, CBn-1Hn , and closo-dicarboranes, C2Bn-2Hn. Inorg Chem 37:3454–3470CrossRefGoogle Scholar
  36. 36.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR (2005) Nucleus independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3512CrossRefGoogle Scholar
  37. 37.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, OxfordGoogle Scholar
  38. 38.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  39. 39.
    Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686CrossRefGoogle Scholar
  40. 40.
    Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, von Schnering HG (1992) Electron localization in solid-state structures of the elements – the diamond structure. Angew Chem Int Ed 31:187–188CrossRefGoogle Scholar
  41. 41.
    Shameema O, Jemmis ED (2009) Closo versus hypercloso metallaboranes: a DFT study. Inorg Chem 48:7818–7827CrossRefGoogle Scholar
  42. 42.
    Rabaâ H, Ghosh S, Sundholm D, Halet J-F, Saillard J-Y (2014) Addition and elimination reactions of H2 in ruthenaborane clusters: a computational study. J Organomet Chem 761:1–9CrossRefGoogle Scholar
  43. 43.
    Krishnamoorthy BS, Kahlal S, Ghosh S, Halet J-F (2013) Electronic, geometrical, and thermochemical studies on group-14 element-diruthenaborane cluster compounds: a theoretical investigation. Theor Chem Acc 132:1356CrossRefGoogle Scholar
  44. 44.
    Muratov DV, Romanov AS, Petrovskii PV, Antipin MY, Siebert W, Kudinov AR (2012) A (diborole)cobalt complex with a C–H···B Bridge, CpCo(1,3-C3B2Me5H), and its thallium derivative: synthesis, structure, and bonding. Eur J Inorg Chem 4174–4182Google Scholar
  45. 45.
    Mebel AM, Musaev DG, Koga N, Morokuma K (1993) Metallaboranes with group 8 and 9 transition metals. Is accurate ab initio molecular orbital calculation of structure, stability and NMR chemical shifts possible? Bull Chem Soc Jpn 66:3259–3270CrossRefGoogle Scholar
  46. 46.
    Anju RS, Roy DK, Mondal B, Ramkumar V, Ghosh S (2013) An early–late transition metal hybrid analogue of hexaborane(12). Organometallics 32:4618–4623CrossRefGoogle Scholar
  47. 47.
    Brânzanic A, Lupan A, King RB (2014) Six-vertex hydrogen-rich Cp2M2B4H8 dimetallaboranes of the second- and third-row transition metals: effects of skeletal electron count on preferred polyhedra. Organometallics 33:6443–6451CrossRefGoogle Scholar
  48. 48.
    Maguire JA, Fagner JS, Siriwardane U, Banewicz JJ, Hosmane NS (1980) Structural and bonding investigation of the donor-acceptor complex 1-Sn(Phenantroline)-2,3-[Si(CH3)3]2-2,3-C2B4H4. Struct Chem 1:583–595CrossRefGoogle Scholar
  49. 49.
    Siriwardane U, Maguire JA, Banewicz JJ, Hosmane NS (1989) Chemistry of C-trimethylsilyl-substituted main-group heterocarboranes. 5. Reactivity of stannacarboranes toward a tridentate Lewis base, 2,2′:6′,2″-terpyridine: synthetic, structural and bonding studies on the donor-acceptor complex 1-Sn-[C5H11N3]-2-(SiMe3)-3-(Me)-2,3- C2B4H4 [R = Si(CH3)3 and CH3]. Organometallics 8:2792–2800CrossRefGoogle Scholar
  50. 50.
    Satpati P (2008) Structure and bonding of MCB5H7 and its sandwiched dimer CB5H6M–MCB5H6 (M = Si, Ge, Sn): Isomer stability and preference for slip distorted structure. J Organomet Chem 693:1159–1165CrossRefGoogle Scholar
  51. 51.
    Barreto RD, Fehlner TP, Hosmane NS (1988) Quantum-chemical investigation of (2,2′-bpy)SnB4H4(CCH3)2 and (CO)3FeB4H4(CCH3)2. Origin of observed structural distortions from idealized closo geometries. Inorg Chem 27:453–457CrossRefGoogle Scholar
  52. 52.
    Fenske RF (1971) Molecular orbital theory for π-donor and π-acceptor complexes. Pure Appl Chem 27:61–72CrossRefGoogle Scholar
  53. 53.
    Hall MB, Fenske RF (1972) Electronic structure and bonding in methyl- and perfluoromethyl (pentacarbonyl) manganese. Inorg Chem 11:768–775CrossRefGoogle Scholar
  54. 54.
    Hosmane NS, Jia L, Zhang H, Maguire JA (1994) Chemistry of C-trimethylsilyl-substituted heterocarboranes. 15. Synthetic, spectroscopic, reactivity, and bonding studies on the “carbons apart” closo-l-Sn-2-(SiMe3)-4-(R)-2,4-C2B4H4: Crystal structures of the donor-acceptor complexes l-Sn(L)-2,4-(SiMe3)2-2,4-C2B4H4 [R = SiMe3, Me; L = 2,2’-C10H8N2, 2,2’-C8H6N4, or (η5-C5H5)Fe(η5-C5H4CH2(Me)2N)]. Organometallics 13:1411–1423CrossRefGoogle Scholar
  55. 55.
    Ezhova MB, Zhang H, Maguire JA, Hosmane NS (1998) Experimental and theoretical studies on group 1 metallacarboranes: Synthesis, structure and ab initio calculations of the NMR chemical shifts of the 1-(THF)-1-(TMEDA)-1-Na-2,4-(SiMe3)2-2,4-C2B4H5 and related carboranes. J Organomet Chem 550:409–422CrossRefGoogle Scholar
  56. 56.
    Aldridge S, Hashimoto H, Kawamura K, Shang M, Fehlner TP (1998) Cluster expansion reactions of group 6 metallaboranes. Syntheses, crystal structures, and spectroscopic characterizations of (Cp*Cr)2B5H9, (Cp*Cr)2B4H8Fe(CO)3, (Cp*Cr)2B4H7Co(CO)3, and (Cp*Mo)2B5H9Fe(CO)3. Inorg Chem 37:928–940CrossRefGoogle Scholar
  57. 57.
    Sahoo S, Reddy KHK, Dhayal RS, Mobin SM, Ramkumar V, Jemmis ED, Ghosh S (2009) Chlorinated hypoelectronic dimetallaborane clusters: synthesis, characterization, and electronic structures of (η5-C5Me5W)2B5HnClm (n = 7, m = 2 and n = 8, m = 1). Inorg Chem 48:6509–6516CrossRefGoogle Scholar
  58. 58.
    de Biani FF, Corsini M, Zanello P, Yao H, Bluhm ME, Grimes RN (2004) Electronic properties of mononuclear, dinuclear, and polynuclear cobaltacarboranes: electrochemical and spectroelectrochemical studies. J Am Chem Soc 126:11360–11369CrossRefGoogle Scholar
  59. 59.
    Qiu Y-Q, Liu X-D, Sun S-L, Fan M, Su Z-M, Wang R-S (2008) DFT study on second-order nonlinear optical properties of the derivatives of 7-vertex cobalt–carborane metallocenyl. J Mol Struct (THEOCHEM) 863:66–72CrossRefGoogle Scholar
  60. 60.
    Wrackmeyer B, Schanz HJ (2004) Hexaethyl-2,4-dicarba-nido-hexaborane(8), deprotonation and complexation studied by NMR spectroscopy and density functional theory (DFT) calculations. Z Naturforsch 59b:685–691Google Scholar
  61. 61.
    Ma NN, Yang GC, Sun SL, Liu CG, Qiu YQ (2011) Computational study on second-order nonlinear optical (NLO) properties of a novel class of two-dimensional Λ- and W-shaped sandwich metallocarborane-containing chromophores. J Organomet Chem 696:2380–2387CrossRefGoogle Scholar
  62. 62.
    Ma N, Liu C, Qiu Y, Sun S, Su Z (2011) Theoretical investigation on redox-switchable second-order nonlinear optical responses of push–pull Cp*CoEt2C2B4H3-expanded (Metallo)porphyrins. J Comput Chem 33:211–219CrossRefGoogle Scholar
  63. 63.
    Krishnamoorthy BS, Thakur A, Chakrahari KKV, Bose SK, Hamon P, Roisnel T, Kahlal S, Ghosh S, Halet J-F (2012) Theoretical and experimental investigations on hypoelectronic heterodimetallaboranes of group 6 transition metals. Inorg Chem 51:10375–10383CrossRefGoogle Scholar
  64. 64.
    Singh AK, Sadrzadeh A, Yakobson BI (2010) Metallacarboranes: toward promising hydrogen storage metal organic frameworks. J Am Chem Soc 132:14126–14129CrossRefGoogle Scholar
  65. 65.
    Geetharani K, Krishnamoorthy BS, Kahlal S, Mobin SM, Halet J-F, Ghosh S (2012) Synthesis and characterization of hypoelectronic tantalaboranes: comparison of the geometric and electronic structures of [(Cp*TaX)2B5H11] (X = Cl, Br, and I). Inorg Chem 51:10176–10184CrossRefGoogle Scholar
  66. 66.
    Siebert W, Kudinov AR, Zanello P, Antipin MY, Scherban VV, Romanov AS, Muratov DV, Starikova ZA, Corsini M (2009) Synthesis of μ-diborolyl triple-decker complexes by electrophilic stacking. Similar bonding properties of anions [CpCo(1,3-C3B2H5)] and Cp- toward transition metals. Organometallics 28:2707–2715CrossRefGoogle Scholar
  67. 67.
    Rochdi M, Saillard J-Y, Halet J-F, Ghosh S, Rabaâ H (2012) Can high-hydride content hypoelectronic rhenaborane clusters take up dihydrogen? A theoretical study. Polyhedron 43:31–35CrossRefGoogle Scholar
  68. 68.
    Thakur A, Chakrahari KKV, Mondal B, Ghosh S (2013) Novel triple-decker sandwich complex with a six-membered [B3Co24-Te)] ring as the middle deck. Inorg Chem 52:2262–2264CrossRefGoogle Scholar
  69. 69.
    Lupan A, King RB (2014) The buildup of eight-vertex tetrametallaborane clusters: bisdisphenoidal versus tetracapped tetrahedral structures. Eur J Inorg Chem 3614–3618Google Scholar
  70. 70.
    Bould J, Harrington RW, Clegg W, Kennedy JD (2012) Nine-vertex metallaborane chemistry. Preparation and characterization of [1,1,1-(PMe3)2H-isocloso-IrB8H7-8-X], where X = H or Cl. J Organomet Chem 721–722:155–163CrossRefGoogle Scholar
  71. 71.
    Mingos DMP, Welch AJ (1980) Molecular-orbital studies on carbametallaboranes. Part 3. Tricapped trigonal prismatic carbaplatinaborane and related polyhedral molecules. Dalton Trans 1674–1681Google Scholar
  72. 72.
    Bould J, Clegg W, Kennedy JD (2006) Polyhedral iridaborane chemistry: elements of the 10-vertex closoisonidoisocloso continuum. Molecular structures of [(PPh3)2HIrB9H9(PPh3)], [(PPh3)(Ph2PC6H4)IrB9H7(PPh3)], [(PPh3)(Ph2PC6H4)HIrB9H6Cl(PPh3)], [(PPh3)(Ph2PC6H4)HIrB9H6(PPh3)2], and [(PPh3)(Ph2PC6H4)HIrB9H12]. Inorg Chim Acta 359:3723–3735CrossRefGoogle Scholar
  73. 73.
    Bould J, Oro LA, Macías R, Kennedy JD, Londesborough MGS (2011) A DFT and crystallographic reinvestigation of the [L2RuC2B7H9] and [L3RuC2B7H9] ‘hypercloso’ and closo systems. Polyhedron 30:2140–2145CrossRefGoogle Scholar
  74. 74.
    Luaces S, Bould J, Macías R, Sancho R, Lahoza FJ, Oro LA (2012) Facile two-electron reduction of a closo-rhodathiadecaborane. Dalton Trans 41:11627–11634CrossRefGoogle Scholar
  75. 75.
    Sharmila D, Ramalakshmi R, Chakrahari KK, Varghese B, Ghosh S (2014) Synthesis, characterization and crystal structure analysis of cobaltaborane and cobaltaheteroborane clusters. Dalton Trans 43:9976–9985CrossRefGoogle Scholar
  76. 76.
    Macías R, Bould J, Holub J, Kennedy JD, Štíbr B, Thornton-Pett M (2007) Polyhedral metallaheteroborane chemistry. Synthesis, spectroscopy, structure and dynamics of eleven-vertex {RhNB9} and {PtCB9} metallaheteroboranes. Dalton Trans 2885–2897Google Scholar
  77. 77.
    Bould J, Cunchillos C, Lahoz FJ, Oro LA, Kennedy JD, Macías R (2010) New iridathiaboranes with reversible isonidonido cluster flexibility. Inorg Chem 49:7353–7361CrossRefGoogle Scholar
  78. 78.
    Calvo B, Macías R, Artigas MJ, Lahoz FJ, Oro LA (2013) Reactions of 11-vertex rhodathiaboranes with HCl: synthesis and reactivity of new Cl-ligated clusters. Inorg Chem 52:211–221CrossRefGoogle Scholar
  79. 79.
    Bould J, Macías R (2014) Do agostic interactions play a role in the stabilization of the nido structure of [(PPh3)2RhSB9H10]? J Organomet Chem 761:120–122CrossRefGoogle Scholar
  80. 80.
    Calvo B, Roy B, Macias R, Artigas MJ, Lahozz FJ, Oro LA (2014) NH3-promoted ligand lability in eleven-vertex rhodathiaboranes. Inorg Chem 53:12428–12436CrossRefGoogle Scholar
  81. 81.
    Du S, Farley RD, Harvey JN, Jeffery JC, Kautz JA, Maher JP, McGrath TD, Murphy DM, Riis-Johannessen T, Stone FGA (2003) The seventeen- and eighteen-electron metallacarbaboranes [1,1,1-(CO)3-2-Ph-closo-1,2-MnCB9H9]n– (n = 1, 2): a structurally characterized, redox-related pair. Chem Commun 1846–1847Google Scholar
  82. 82.
    Nafady A, Butterick R III, Calhorda MJ, Carroll PJ, Chong D, Geiger WE, Sneddon LG (2007) Hyperelectronic metal-carborane analogues of cymantrene (MnCp(CO)3) anions: electronic and structural noninnocence of the tricarbadecaboranyl ligand. Organometallics 26:4471–4482CrossRefGoogle Scholar
  83. 83.
    Muhammad S, Xu H, Liao Y, Kan Y, Su Z (2009) Quantum mechanical design and structure of the Li@B10H14 basket with a remarkably enhanced electro-optical response. J Am Chem Soc 131:11833–11840CrossRefGoogle Scholar
  84. 84.
    González-Cardoso P, Stoica A-I, Farràs P, Pepiol A, Viñas C, Teixidor F (2010) Additive tuning of redox potential in metallacarboranes by sequential halogen substitution. Chem Eur J 16:6660–6665CrossRefGoogle Scholar
  85. 85.
    Farràs P, Teixidor F, Rojo I, Kivekäs R, Sillanpää R, González-Cardoso P, Viñas C (2011) Relaxed but highly compact diansa metallacyclophanes. J Am Chem Soc 133:16537–16552CrossRefGoogle Scholar
  86. 86.
    Farràs P, Viñas C, Teixidor F (2013) Preferential chlorination vertices in cobaltabisdicarbollide anions. Substitution rate correlation with site charges computed by the two atoms natural population analysis method (2a-NPA). J Organomet Chem 747:119–125CrossRefGoogle Scholar
  87. 87.
    Farràs P, Olid-Britos D, Viñas C, Teixidor F (2011) Unprecedented B–H activation through Pd-catalysed B–C vinyl bond coupling on borane systems. Eur J Inorg Chem 2525–2532Google Scholar
  88. 88.
    Juárez-Pérez EJ, Viñas C, González-Campo A, Teixidor F, Sillanpää R, Kivekäs R, Núñez R (2008) Controlled direct synthesis of C-mono- and C-disubstituted derivatives of [3,3′-Co(1,2-C2B9H11)2]ˉ with organosilane groups: theoretical calculations compared with experimental results. Chem Eur J 14:4924–4938Google Scholar
  89. 89.
    Juárez-Pérez EJ, Viñas C, Teixidor F, Núñez R (2009) First example of the formation of a Si–C bond from an intramolecular Si–H⋯H–C dihydrogen interaction in a metallacarborane: a theoretical study. J Organomet Chem 694:1764–1770CrossRefGoogle Scholar
  90. 90.
    Bühl M, Hnyk D, Macháček J (2005) Computational study of structures and properties of metallaboranes: cobalt bis(dicarbollide). Chem Eur J 11:4109–4120CrossRefGoogle Scholar
  91. 91.
    Viñas C, Llop J, Teixidor F, Kivekäs R, Sillanpää R (2005) Restricted rotation in unbridged sandwich complexes: rotational behavior of closo-[Co(η5-NC4H4)(C2B9H11)] derivatives. Chem Eur J 11:1933–1941CrossRefGoogle Scholar
  92. 92.
    Juárez-Pérez EJ, Núñez R, Viñas C, Sillanpää R, Teixidor F (2010) The role of C–H⋯H–B interactions in establishing rotamer configurations in metallabis(dicarbollide) systems. Eur J Inorg Chem 2385–2392Google Scholar
  93. 93.
    Chevrot G, Schurhammer R, Wipff G (2007) Molecular dynamics study of dicarbollide anions in nitrobenzene solution and at its aqueous interface. Synergistic effect in the Eu(III) assisted extraction. Phys Chem Chem Phys 9:5928–5938CrossRefGoogle Scholar
  94. 94.
    Coupez B, Wipff G (2004) The synergistic effect of cobalt-dicarbollide anions on the extraction of M3+ lanthanide cations by Calix[4]arenes: a molecular dynamics study at the water–‘oil’ interface. C R Chimie 7:1153–1164CrossRefGoogle Scholar
  95. 95.
    Chevrot G, Schurhammer R, Wipff G (2006) Surfactant behavior of “ellipsoidal” dicarbollide anions: a molecular dynamics study. J Phys Chem B 110:9488–9498CrossRefGoogle Scholar
  96. 96.
    Řezáčová P, Pokorná J, Brynda J, Kožíšek M, Cígler P, Lepšík M, Fanfrlík J, Řezáč J, Šašková KG, Sieglová I, Plešek J, Šícha V, Grüner B, Oberwinkler H, Sedláček J, Kräusslich HG, Hobza P, Král V, Konvalinka J (2009) Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes. J Med Chem 52:7132–7141CrossRefGoogle Scholar
  97. 97.
    Barszcz B, Graja A, Ziolkovskiy DV, Starodub VA, Kravchenko AV (2010) Raman studies of TMTSF salt of cobalt bis(dicarbollide) anion. J Mol Struct 976:196–199CrossRefGoogle Scholar
  98. 98.
    Kazheva ON, Alexandrov GG, Kravchenko AV, Kosenko ID, Lobanova IA, Sivaev IB, Filippov OA, Shubina ES, Bregadze VI, Starodub VA, Titov LV, Buravov LI, Dyachenko OA (2011) Molecular conductors with a 8-hydroxy cobalt bis(dicarbollide) anion. Inorg Chem 50:444–450CrossRefGoogle Scholar
  99. 99.
    Bühl M, Hnyk D, Macháček J (2007) Computational studies of structures and properties of metallaboranes. Part 3: protonated iron bis(dicarbollide), [3-Fe-(1,2-C2B9H11)2H]. Inorg Chem 46:1771–1777CrossRefGoogle Scholar
  100. 100.
    Pennanen TO, Macháček J, Taubert S, Vaara J, Hnyk D (2010) Ferrocene-like iron bis(dicarbollide), [3-FeIII-(1,2-C2B9H11)2]. The first experimental and theoretical refinement of a paramagnetic 11B NMR spectrum. Phys Chem Chem Phys 12:7018–7025CrossRefGoogle Scholar
  101. 101.
    Núñez R, Tutusaus O, Teixidor F, Viñas C, Sillanpää R, Kivekäs R (2005) Highly stable neutral and positively charged dicarbollide sandwich complexes. Chem Eur J 11:5637–5647CrossRefGoogle Scholar
  102. 102.
    Hawthorne MF, Zink JI, Skelton JM, Bayer MJ, Liu C, Livshits E, Baer R, Neuhauser D (2004) Electrical or photocontrol of the rotary motion of a metallacarborane. Science 303:1849–1851CrossRefGoogle Scholar
  103. 103.
    Ma N-N, Li S-J, Yan L-K, Qiu Y-Q, Su Z-M (2014) Switchable NLO response induced by rotation of metallacarboranes [NiIII/IV(C2B9H11)2]–/0 and C-, B-functionalized derivatives. Dalton Trans 43:5069–5075Google Scholar
  104. 104.
    Bühl M, Holub J, Hnyk D, Macháček J (2006) Computational studies of structures and properties of metallaboranes. 2. Transition-metal dicarbollide complexes. Organometallics 25:2173–2181CrossRefGoogle Scholar
  105. 105.
    Perekalin DS, Kudinov AR (2005) Calculations of thermodynamic stability of CpCoC2B9H11 cobaltacarborane isomers. Russ Chem Bull 54:1603–1605CrossRefGoogle Scholar
  106. 106.
    Llop J, Viñas C, Teixidor F, Victori L, Kivekäs R, Sillanpää R (2001) C-C plasticity in boron chemistry: modulation of the Cc⋯Cc distance in mixed pyrrolyl/dicarbollide complexes. Organometallics 20:4024–4030CrossRefGoogle Scholar
  107. 107.
    Herber RH, Kudinov AR, Zanello P, Nowik I, Perekalin DS, Meshcheryakov VI, Lyssenko KA, Corsini M, Fedi S (2006) Synthesis, structure, electrochemistry, and metal-atom dynamics of cyclopentadienyl ferracarboranes. Eur J Inorg Chem 1786–1795Google Scholar
  108. 108.
    Planas JG, Viñas C, Teixidor F, Comas-Vives A, Ujaque G, Lledós A, Light ME, Hursthouse MB (2005) Self-Assembly of mercaptane-metallacarborane complexes by an unconventional cooperative effect: a C–H⋯S–HH⋯H–B hydrogen/dihydrogen bond interaction. J Am Chem Soc 127:15976–15982CrossRefGoogle Scholar
  109. 109.
    Mutseneck EV, Perekalin DS, Holub J, Starikova ZA, Petrovskii PV, Zanello P, Corsini M, Štíbr B, Kudinov AR (2006) (Tetramethylcyclobutadiene)cobalt complexes with phosphacarborane ligands. Organometallics 25:2419–2426CrossRefGoogle Scholar
  110. 110.
    Alekseev LS, Safronov AV, Dolgushin FM, Korlyukov AA, Godovikov IA, Chizhevsky IT (2009) An unexpected cluster opening upon the formation of electronically unsaturated η3-(cyclooctenyl)metallacarboranes of rhodium(III) and iridium(III) with sterically reduced [(PhCH2)2C2B9H9]2− ligand. J Organomet Chem 694:1727–1735CrossRefGoogle Scholar
  111. 111.
    Loginov DA, Starikova ZA, Corsini M, Zanello P, Kudinov AR (2013) (Cyclopentadienyl)metalladicarbollides 3-(η-C5R5)-3,1,2-MC2B9H11 (M = Co, Rh, Ir): synthesis, electrochemistry, and bonding. J Organomet Chem 747:69–75CrossRefGoogle Scholar
  112. 112.
    Webster CE, Hall MB (2003) De novo design in organometallic chemistry: stabilizing iridium(V). Coord Chem Rev 238–239:315–331CrossRefGoogle Scholar
  113. 113.
    Loginov DA, Vinogradov MM, Starikova ZA, Petrovskii PV, Holub J, Kudinov AR (2010) The first metallacarborane triple-decker complexes with a bridging pentaphosphonyl ligand. Collect Czech Chem Commun 75:981–993CrossRefGoogle Scholar
  114. 114.
    Kudinov AR, Zanello P, Herber RH, Loginov DA, Vinogradov MM, Vologzhanina AV, Starikova ZA, Corsini M, Giorgi G, Nowik I (2010) Ferracarborane benzene complexes [(η-9-L-7,8-C2B9H10)Fe(η-C6H6)]+ (L = SMe2, NMe3): synthesis, reactivity, electrochemistry, Mössbauer effect studies, and bonding. Organometallics 29:2260–2271CrossRefGoogle Scholar
  115. 115.
    Bould J, Kennedy JD (2014) An assessment of the intercarbon stretching phenomenon in C-substituted “pseudocloso” {3,1,2-RuC2B9} metalladicarbaboranes. J Organomet Chem 749:163–173CrossRefGoogle Scholar
  116. 116.
    Fischer MJ, Jelliss PA, Phifer LM, Rath NP (2005) Halogenated rhenacarboranes: optoelectronic behavior of the iodinated rhenacarborane complex anion [3,3,3-(CO)3−8-I-closo-3,1,2-ReC2B9H10]. Inorg Chim Acta 358:1531–1544Google Scholar
  117. 117.
    Zou H-Y, Ma N-N, Sun S-L, Li X, Qiu Y-Q (2013) Structures and redox-switchable second-order nonlinear optics properties of N-legged piano stool shaped 12-vertex rhenacarborane half-sandwich complexes. J Organomet Chem 728:6–15CrossRefGoogle Scholar
  118. 118.
    Fox MA, Howard JAK, Hughes AK, Malget JM, Yufit DS (2001) Synthesis of isomeric B-methylated tantalum carboranes, (Me2N)3TaC2B9H10Me. Dalton Trans 2263–2269Google Scholar
  119. 119.
    Bould J, Baše T, Londesborough MGS, Oro LA, Macías R, Kennedy JD, Kubát P, Fuciman M, Polívka T, Lang K (2011) Reversible capture of small molecules on bimetallaborane clusters: synthesis, structural characterization, and photophysical aspects. Inorg Chem 50:7511–7523CrossRefGoogle Scholar
  120. 120.
    Bould J, Londesborough MGS, Kennedy JD, Macías R, Winter REK, Císařová I, Kubát P, Lang K (2013) Isonitrile ligand effects on small-molecule-sequestering in bimetalladodecaborane clusters. J Organomet Chem 747:76–84Google Scholar
  121. 121.
    Mingos DMP, Forsyth MI, Welch AJ (1977) X-ray crystallographic and theoretical studies on ‘slipped’ metallacarboranes. J Chem Soc Chem Commun 605–607Google Scholar
  122. 122.
    Mingos DMP (1977) Molecular-orbital studies on carbametallaboranes. Part 1. Icosahedral carbaplatinaborane polyhedra. Dalton Trans 602–610Google Scholar
  123. 123.
    Calhorda MJ, Mingos DMP, Welch AJ (1982) Theoretical comparison of the ‘slip’ distortion and rotational barriers in comparable seven and twelve vertex carbaplatinaboranes. J Organomet Chem 228:309–320CrossRefGoogle Scholar
  124. 124.
    Mingos DMP, Forsyth MI, Welch AJ (1977) Molecular and crystal structure of 3,3-bis(triethylphosphine)-1,2-dicarba-3-platinadodecaborane(11) and molecular-orbital analysis of the slip distortion in carbametallaboranes. Dalton Trans 1363–1374Google Scholar
  125. 125.
    Perekalin DS, Holub J, Golovanov DG, Lyssenko KA, Petrovskii PV, Štíbr B, Kudinov AR (2005) Ferra- and ruthenatricarbollides CpFeC3B8H11 and Cp*RuC3B8H11. Organometallics 24:4387–4392CrossRefGoogle Scholar
  126. 126.
    Perekalin DS, Glukhov IV, Štíbr B, Kudinov AR (2006) A restricted polyhedral rearrangement of an aminosubstituted 12-vertex ferratricarbollide. Inorg Chim Acta 359:3264–3268CrossRefGoogle Scholar
  127. 127.
    Holub J, Grüner B, Perekalin DS, Golovanov DG, Lyssenko KA, Petrovskii PV, Kudinov AR, Štíbr B (2005) Synthesis and rearrangements of aminosubstituted ferra- and ruthenatricarbaboranes. Inorg Chem 44:1655–1659CrossRefGoogle Scholar
  128. 128.
    Januszko A, Kaszynski P, Grüner B (2007) Liquid crystalline derivatives of bis(tricarbollide)Fe(II). Inorg Chem 46:6078–6082CrossRefGoogle Scholar
  129. 129.
    Kiani FA, Hofmann M (2006) Ortho-, meta-, and para-directing influence of transition-metal fragments in 12-vertex closo-cyclopentadienylmetallaheteroboranes: additive nature of structural increments. Organometallics 25:485–490CrossRefGoogle Scholar
  130. 130.
    McLellan R, Boag NM, Dodds K, Ellis D, Macgregor SA, McKay D, Masters SL, Noble-Eddy R, Platt NP, Rankin DWH, Robertson HE, Rosair GM, Welch AJ (2011) New chemistry of 1,2-closo-P2B10H10 and 1,2-closo-As2B10H10; in silico and gas electron diffraction structures, and new metalladiphospha- and metalladiarsaboranes. Dalton Trans 40:7181–7192CrossRefGoogle Scholar
  131. 131.
    Hnyk D, Wann DA, Holub J, Bühl M, Robertson HE, Rankin DWH (2008) The gas-phase structure of 1-selena-closo-dodecaborane(11), 1-SeB11H11, determined by the concerted use of electron diffraction and computational methods. Dalton Trans 96–100Google Scholar
  132. 132.
    Lee J-D, Kim S-K, Kim T-J, Han W-S, Lee Y-J, Yoo D-H, Cheong M, Ko J, Kang SO (2008) Dicarbollylamine ligand as a tunable template for σ, σ- and π, σ-bonding modes: syntheses, structures, and theoretical studies of η5:η1-coordinated constrained-geometry group 13 metal complexes. J Am Chem Soc 130:9904–9917CrossRefGoogle Scholar
  133. 133.
    Scott G, McAnaw A, McKay D, Boyd ASF, Ellis D, Rosair GM, Macgregor SA, Welch AJ, Laschi F, Rossib F, Zanello P (2010) Supraicosahedral indenyl cobaltacarboranes. Dalton Trans 39:5286–5300CrossRefGoogle Scholar
  134. 134.
    McAnaw A, Lopez ME, Scott G, Ellis D, McKay D, Rosair GM, Welch AJ (2012) Untethered 4,1,2-MC2B10 supraicosahedral metallacarboranes, their C, C′-dimethyl 4,1,6-, 4,1,8- and 4,1,12-MC2B10 analogues, and DFT study of the (4,)1,2- to (4,)1,6-isomerisations of C2B11 carboranes and MC2B10 metallacarboranes. Dalton Trans 41:10957–10969Google Scholar
  135. 135.
    Burke A, Ellis D, Ferrer D, Ormsby DL, Rosair GM, Welch AJ (2005) Synthetic, spectroscopic, computational and structural studies of some 13-vertex ruthenacarboranes. Dalton Trans 1716–1721Google Scholar
  136. 136.
    Dustin DF, Dunks GB, Hawthorne MF (1973) Novel 13-vertex metallocarborane complexes formed by polyhedral expansion of 1,2-dicarba-closo-dodecaborane(12) (1,2-B10C2H12). J Am Chem Soc 95:1109–1115CrossRefGoogle Scholar
  137. 137.
    Ellis D, McKay D, Macgregor SA, Rosair GM, Welch AJ (2010) Room-temperature C-C bond cleavage of an arene by a metallacarborane. Angew Chem Int Ed 49:4943–4945CrossRefGoogle Scholar
  138. 138.
    Scott G, Ellis D, Rosair GM, Welch AJ (2012) Icosahedral and supraicosahedral naphthalene ruthenacarboranes. J Organomet Chem 721–722:78–94CrossRefGoogle Scholar
  139. 139.
    Dalby KJ, Ellis D, Erhardt S, McIntosh RD, Macgregor SA, Rae K, Rosair GM, Settels V, Welch AJ, Hodson BE, McGrath TD, Stone FGA (2007) The conformations of 13-vertex ML2C2B10 metallacarboranes: experimental and computational studies. J Am Chem Soc 129:3302–3314CrossRefGoogle Scholar
  140. 140.
    Nana M, Yongqing Q, Shiling S, Min F, Zhongmin S (2010) Density functional theory study on structure and nonlinear optical properties of 13-vertex metallacarborane. Acta Chim Sin 68:733–738Google Scholar
  141. 141.
    Cheung M-S, Chan H-S, Bi S, Lin Z, Xie Z (2005) Functional sidearm promoted electron-transfer reactions: a new route to metallacarboranes incorporating the η7-arachno-carboranyl ligands. Organometallics 24:4333–4336CrossRefGoogle Scholar
  142. 142.
    Chui K, Yang Q, Mak TCW, Lam WH, Lin Z, Xie Z (2000) Synthesis, structure, and bonding of d0/fn metallacarboranes incorporating the η7-carboranyl ligand. J Am Chem Soc 122:5758–5764CrossRefGoogle Scholar
  143. 143.
    Wilson NMM, Ellis D, Boyd ASF, Giles BT, Macgregor SA, Rosair GM, Welch AJ (2002)The first supraicosahedral p-block metallacarboranes. Chem Commun 464–465Google Scholar
  144. 144.
    Boyd ASF, Burke A, Ellis D, Ferrer D, Giles BT, Laguna MA, McIntosh R, Macgregor SA, Ormsby DL, Rosair GM, Schmidt F, Wilson NMM, Welch AJ (2003) Supraicosahedral (metalla)carboranes. Pure Appl Chem 75:1325–1333CrossRefGoogle Scholar
  145. 145.
    Abram PD, McKay D, Ellis D, Macgregor SA, Rosair GM, Welch AJ (2010) Synthetic, structural and computational studies on adducts of the 4,1,2-SnC2B10 supraicosahedral stannacarborane. Dalton Trans 39:2412–2422CrossRefGoogle Scholar
  146. 146.
    Min F, Yongqing Q, Shiling S, Xiaodong L, Zhongmin S (2009) Density functional theory study on the polarizability and second-order hyperpolarizability of 14-vertex bis-substituted carborane and metallaborane. Acta Chim Sin 67:1171–1176Google Scholar
  147. 147.
    Zheng F, Xie Z (2014) Synthesis and structural characterization of 14-vertex germa-, stanna-, and plumba-carboranes. Dalton Trans 43:4986–4992CrossRefGoogle Scholar
  148. 148.
    Roy DK, Mondal B, Shankhari P, Anju RS, Geetharani K, Mobin SM, Ghosh S (2013) Supraicosahedral polyhedra in metallaboranes: synthesis and structural characterization of 12-, 15-, and 16-vertex rhodaboranes. Inorg Chem 52:6705–6712CrossRefGoogle Scholar
  149. 149.
    Roy DK, Bose SK, Anju RS, Mondal B, Ramkumar V, Ghosh S (2013) Boron beyond the icosahedral barrier: a 16-vertex metallaborane. Angew Chem Int Ed 52:3222–3226CrossRefGoogle Scholar
  150. 150.
    Lupan A, King RB (2012) Hypoelectronic dirhenaboranes having eight to twelve vertices: Internal versus surface rhenium − rhenium bonding. Inorg Chem 51:7609–7616CrossRefGoogle Scholar
  151. 151.
    Krishnamoorthy BS, Kahlal S, Le Guennic B, Saillard J-Y, Ghosh S, Halet JF (2012) Molecular transition-metal boron compounds. Any interest? Solid State Sci 14:1617–1623CrossRefGoogle Scholar
  152. 152.
    Lupan A, King RB (2013) Comparison of hypoelectronic deltahedral ditechnetaboranes having eight to twelve vertices with their rhenium analogues: Examples of polyhedral surface metal–metal multiple bonds. Polyhedron 60:151–157CrossRefGoogle Scholar
  153. 153.
    Boucher B, Ghosh S, Halet J-F, Kahlal S, Saillard J-Y (2012) Bonding and electronic structure of Cp*2Ru2(B8H14), a metallaborane analogue of dinuclear pentalene complexes. J Organomet Chem 721–722:167–172CrossRefGoogle Scholar
  154. 154.
    Dhayal RS, Sahoo S, Reddy KHK, Mobin SM, Jemmis ED, Ghosh S (2010) Vertex-fused metallaborane clusters: synthesis, characterization and electronic structure of [(η5-C5Me5Mo)3MoB9H18]. Inorg Chem 49:900–904Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Chemistry and Chemical EngineeringBabeș-Bolyai UniversityCluj-NapocaRomania
  2. 2.Department of ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations