Skip to main content

On Conjectures of T. Ordowski and Z.W. Sun Concerning Primes and Quadratic Forms

  • Chapter
  • 1511 Accesses

Abstract

We discuss recent conjectures of T. Ordowski and Z.W. Sun on limits of certain coordinate-wise defined functions of primes in \(\mathbb{Q}(\sqrt{-1})\) and \(\mathbb{Q}(\sqrt{-3})\). Let \(p \equiv 1\bmod 4\) be a prime and let \(p = a_{p}^{2} + b_{p}^{2}\) be the unique representation with positive integers \(a_{p} > b_{p}\). Then the following holds:

$$\displaystyle{\lim _{N\rightarrow \infty }\frac{\sum _{p\leq N,p\equiv 1\bmod 4}a_{p}^{k}} {\sum _{p\leq N,p\equiv 1\bmod 4}b_{p}^{k}} = \frac{\int _{0}^{\pi /4}\cos ^{k}(x)\,dx} {\int _{0}^{\pi /4}\sin ^{k}(x)\,dx}.}$$

For k = 1 this proves, but for k = 2 this disproves the conjectures in question. We shall also generalise the result to cover all positive definite, primitive, binary quadratic forms. In addition we will discuss the case of indefinite forms and prove a result that covers many cases in this instance.

On the occasion of Helmut Maier’s 60th birthday. With admiration for his beautiful results on the distribution of primes

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.D. Coleman, The distribution of points at which binary quadratic forms are prime. Proc. Lond. Math. Soc. 61(3), 433–456 (1990)

    Article  MATH  Google Scholar 

  2. M.D. Coleman, The distribution of points at which norm-forms are prime. J. Number Theory 41(3), 359–378 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. I. Math. Z. 1, 357–376 (1918)

    Article  MathSciNet  Google Scholar 

  4. E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. II. Math. Z. 6, 11–51 (1920)

    Article  MathSciNet  Google Scholar 

  5. D. Hensley, An asymptotic inequality concerning primes in contours for the case of quadratic number fields. Acta Arith. 28, 69–79 (1975)

    MATH  MathSciNet  Google Scholar 

  6. I.M. Kalnin\(^{{\prime}}\), On the primes of an imaginary quadratic field which are located in sectors (Russian). Latvijas PSR Zin\(\bar{\mathrm{a}}\) t\(\stackrel{\mathrm{n}}{,}\) u Akadēmijas Vēstis. Fizikas un Tehnisko Zin\(\bar{\mathrm{a}}\) t\(\stackrel{\mathrm{n}}{,}\) u Sērija. Izvestiya Akademii Nauk Latviĭskoĭ SSR. Seriya Fizicheskikh i Tekhnicheskikh Nauk 1965(2), 83–92 (1965)

    Google Scholar 

  7. S. Knapowski, On a theorem of Hecke. J. Number Theory 1, 235–251 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Kubilyus, The distribution of Gaussian primes in sectors and contours (Russian). Leningrad. Gos. Univ. Uc. Zap. Ser. Mat. Nauk 137(19), 40–52 (1950)

    MathSciNet  Google Scholar 

  9. I.P. Kubilyus, On some problems of the geometry of prime numbers (Russian). Mat. Sb. N.S. 31(73), 507–542 (1952)

    Google Scholar 

  10. OEIS Foundation Inc., The on-line encyclopedia of integer sequences (2011), http://oeis.org/

  11. H. Rademacher, Primzahlen reell-quadratischer Zahlkörper in Winkelräumen. Math. Ann. 111, 209–228 (1935)

    Article  MathSciNet  Google Scholar 

  12. Z.W. Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588, version 26, 18 March 2013 (2013)

    Google Scholar 

Download references

Acknowledgements

The first named author was partially supported by the Austrian Science Fund (FWF): W1230.

The authors thank the referee for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Elsholtz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elsholtz, C., Harman, G. (2015). On Conjectures of T. Ordowski and Z.W. Sun Concerning Primes and Quadratic Forms. In: Pomerance, C., Rassias, M. (eds) Analytic Number Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-22240-0_4

Download citation

Publish with us

Policies and ethics