Skip to main content

Fredholm Determinants and the Camassa-Holm Hierarchy

  • Chapter
  • 845 Accesses

Part of the book series: Contemporary Mathematicians ((CM))

Abstract

The equation of Camassa and Holm [2]2 is an approximate description of long waves in shallow water.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See also Camassa, Holm, and Hyman [3].

  2. 2.

    I recall H. Flaschka’s definition of integrability, the only honest one around: “You didn’t think I could integrate that, but I can!”

  3. 3.

    0 is not in the spectrum.

  4. 4.

    The indexing will be explained later.

  5. 5.

    The computation can be found in McKean [12] I repeat it here for the reader’s convenience.

  6. 6.

    The individual flows commute so the order of the product is immaterial.

  7. 7.

    McKean and Trubowitz [13] encountered similar theta-like determinants in connection with the isospectral class of the quantum-mechanical oscillator − D 2 + x 2 − 1.

  8. 8.

    m +m is the positive/negative part of m.

  9. 9.

    \(f_{n}(x) \simeq\) a “norming constant” × e x∕2 at \(+\infty.\)

  10. 10.

    \(A^{\mathfrak{p}}\) inverse is \(A^{-\mathfrak{p}}\), in which \(-\mathfrak{p}\) is \(\mathfrak{p}\) with signature reversed.

  11. 11.

    \(G = (1 - D^{2})^{-1} = \frac{1} {2}\exp (-\vert x - y\vert )\) as before.

  12. 12.

    Here and below f n is always normalized as in \(\|f_{n}\|^{2} =\int [(f_{n}^{{\prime}})^{2} + \frac{1} {4}f_{n}^{2}] = \lambda _{n}\int mf_{n}^{2} = 1.\)

  13. 13.

    J = mD + Dm as before.

  14. 14.

    mD + Dm is skew.

  15. 15.

    The computation is the same.

  16. 16.

    The preliminary evaluation of J from the previous display is used.

  17. 17.

    \(\lambda _{0}m_{0}f_{0} = (\frac{1} {4} - D^{2})f_{0}\) is used to reduce the integrals to their final form.

  18. 18.

    \(-\varLambda \int _{-\infty }^{+\infty }mf_{-}^{2} = 1\).

  19. 19.

    f (−1) = 0 implies f  ≡ 0. which is not so.

  20. 20.

    ff is the matrix \([f_{i}f_{j}: i,j \in \mathbb{Z} - 0]\).

  21. 21.

    t is the diagonal matrix \(t_{n}: n \in \mathbb{Z} - 0\), and similarly for \(\lambda\).

  22. 22.

    1 − M(1 + CM)−1 C = (1 + MC)−1, (1 + CM)−1 C being symmetric.

  23. 23.

    Q −1(e t − 1) is symmetric and \(\eta = (e^{t} - 1)\xi\).

  24. 24.

    See Sect. 9.5.2.

  25. 25.

    Q −1 = 1 − (Q − 1)Q −1.

  26. 26.

    PQ −1 is bounded.

  27. 27.

    Q −1 = 1 − (Q − 1)Q −1.

  28. 28.

    \(G = (1 - D^{2})^{-1} = \frac{1} {2}\exp (-\vert x - y\vert )\) as before.

  29. 29.

    You may think line 3 is a little shaky but you can check line 4 directly from line 2.

  30. 30.

    \(\lambda \int _{-\infty }^{\infty }mf \otimes f = \text{the identity}\).

  31. 31.

    \(C\int _{-\infty }^{x}mf \otimes fC\) is compact with finite absolute trace; compare Sect. 9.5.3.

  32. 32.

    \(\langle f_{1},f_{2}\rangle\) is the inner product \(\int _{-\infty }^{\infty }(f_{1}^{{\prime}}f_{2}^{{\prime}} + \frac{1} {4}f_{1}f_{2})\).

  33. 33.

    The rest cancels.

  34. 34.

    The rest cancels.

  35. 35.

    \((1 +\xi \otimes \eta )^{-1} = 1 - (1+\xi \bullet \eta )^{-1}\xi \otimes \eta\).

  36. 36.

    \(K\,K^{\dag } = e^{-\frac{1} {2} \vert x-y\vert }\).

  37. 37.

    See [2] and/or [3].

  38. 38.

    \(q(0) =\ln \mathop{ \mathrm{ch}}\nolimits (T\sqrt{H/2})\) is used; it comes from the second version of T.

  39. 39.

    If you think of the two solitons as particles, you might prefer to say they “bounce off each other,” but all such descriptions are just a manner of speaking, not the thing itself.

  40. 40.

    Change n to − n and use \(\lambda \int _{-\infty }^{\infty }mf \otimes f = 1\).

  41. 41.

    m ≠ 0 on any interval, so the functions \(f_{n}: n \in \mathbb{Z} - 0\ \mathop{ \mathrm{span}}\nolimits H^{1}\); see Sect. 9.2.2.

  42. 42.

    The spectrum is odd.

  43. 43.

    \(q =\ln c^{2}\).

  44. 44.

    [a, b] is the Wronskian \(a^{{\prime}}b - ab^{{\prime}}\).

  45. 45.

    The scale \(\overline{x}\) must be adjusted by an additive \(-\ln (-\varLambda )\) before making \(\varLambda \uparrow 0\).

  46. 46.

    \(\overline{x}^{{\prime}} = me^{x}/e^{\overline{x}}\).

  47. 47.

    \(m/\overline{y}^{{\prime}} = -(e^{{\prime}2} -\frac{1} {4}e^{2})/\varLambda e^{2}\).

  48. 48.

    McKean and Trubowitz [13] served as a model.

  49. 49.

    \(\overline{x}^{{\prime}} =\vartheta ^{2}/\vartheta _{-}\vartheta _{+}\).

  50. 50.

    (1 + cM)−1 C is symmetric.

  51. 51.

    See Holm and Staley [8] and Degasperis, Holm, and Hone [5].

References

  1. R. Beals, D. H. Sattinger, and J. Szmigielski. Multipeakons and the classical moment problem. Adv. Math., 154:229–257, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Camassa and D. Holm. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71(11):1661–1664, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Camassa, D. D. Holm, and M. Hyman. A new integrable shallow water equation. Adv. Appl. Math., 31:1–33, 1993.

    Google Scholar 

  4. A. Constantin and J. Escher. Well-posedness, global existence, and blow up phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math., 51:475–504, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Degasperis, D. D. Holm, and A. N. N. Hone. A new integrable equation with peakon solutions. Theoretical and Mathematical Physics, 133:1463–1474, 2002.

    Article  MathSciNet  Google Scholar 

  6. F. J. Dyson. Fredholm determinants and inverse scattering. Comm. Math. Phys., 47:171–183, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Ercolani and H. P. McKean. Geometry of KdV (4). Abel sums, Jacobi variety, and theta function in the scattering case. Invent. Math., 99(3):483–544, 1990.

    Google Scholar 

  8. D. Holm and M. F. Staley. Wave structure and nonlinear balances in a family of evolutionary PDEs. SIAM J. Appl. Dyn. Syst., 2:323–380, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. R. Its and V. B. Matveev. Hill operators with a finite number of lacunae. Funkcional. Anal. i Priložen., 9(1):69–70, 1975.

    Article  MathSciNet  Google Scholar 

  10. H. P. McKean. Geometry of KdV (1): addition and the unimodal spectral class. Rev. Math. Iberoamer., 2:235–261, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. P. McKean. Breakdown of a shallow water equation. Asian J. Math., 2:867–874, 1998.

    MathSciNet  MATH  Google Scholar 

  12. H. P. McKean. Addition for the acoustic equation. Comm. Pure Appl. Math., 54:1271–1288, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. P. McKean and E. Trubowitz. The spectral class of the quantum-mechanical harmonic oscillator. Comm. Math. Phys., 82(4):471–495, 1981/82.

    Google Scholar 

  14. T. J. Stieltjes. Recherches sur les fractions continues, Oeuvres complétes 2. Nordhoff, Gröningen, 1918.

    Google Scholar 

  15. Z. Xin and P. Zhang. On the weak solutions to a shallow water equation. Comm. Pure Appl. Math., 53(11):1411–1433, 2000.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry P. McKean Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McKean, H.P. (2015). Fredholm Determinants and the Camassa-Holm Hierarchy. In: Grünbaum, F., van Moerbeke, P., Moll, V. (eds) Henry P. McKean Jr. Selecta. Contemporary Mathematicians. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-22237-0_9

Download citation

Publish with us

Policies and ethics