Skip to main content

Curvature and the Eigenvalues of the Laplacian

  • Chapter
Henry P. McKean Jr. Selecta

Part of the book series: Contemporary Mathematicians ((CM))

  • 980 Accesses

Abstract

A famous formula of H. Weyl [17] states that if D is a bounded region of R d with a piecewise smooth boundary B, and if 0 > γ 1 ≥ γ 2 ≥ γ 3 ≥ etc. is the spectrum of the problem

$$\displaystyle\begin{array}{rcl} \varDelta f =\big (\partial ^{2}/\partial x_{ 1}^{2} + \cdots + \partial ^{2}/\partial x_{ d}^{2}\big)f =\gamma f\quad \mbox{ in }D,& &{}\end{array}$$
(6.1.1a)
$$\displaystyle\begin{array}{rcl} f \in C^{2}(D) \cap C(\overline{D}),& &{}\end{array}$$
(6.1.1b)
$$\displaystyle\begin{array}{rcl} f = 0\quad \mbox{ on }B,& &{}\end{array}$$
(6.1.1c)

then

$$\displaystyle\begin{array}{rcl} -\gamma _{n} \sim C(d)(n/\mbox{ vol }D)^{2/d}\quad (n \uparrow \infty ),& &{}\end{array}$$
(6.1.2)

or, what is the same,

$$\displaystyle\begin{array}{rcl} Z \equiv \mathop{\mathrm{sp}}\nolimits e^{t\varDelta } =\sum _{ n\geq 1}\exp \big(\gamma _{n}t\big) \sim (4\pi t)^{-d/2} \times \mathop{\mathrm{vol}}\nolimits D\quad (t \downarrow 0),& &{}\end{array}$$
(6.1.3)

where \(C(d) = 2\pi [(d/2)!]^{d/2}\).

Communicated April 6, 1967. The partial support of the National Science Foundation under NSF GP-4364 and NSF GP-6166 is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Kac [6] expresses the corner correction \((\pi ^{2} -\gamma ^{2})/24\pi \gamma\) as complicated integral. D. B. Ray [private communication] derived it by a simpler argument, beginning with the Green function G for sΔ(s > 0) expressed as a Kantorovich-Lebedev transform

    $$\displaystyle\begin{array}{rcl} G(A,B)& =& x^{-2}\int _{ 0}^{\infty }dxK_{\sqrt{-1}x}\big(\sqrt{s}a\big)K_{\sqrt{-1}x}\big(\sqrt{s}b\big) {}\\ & & \times \bigg[\cosh \big(\pi -\vert \alpha -\beta \vert \big)x -\frac{\sinh \pi x} {\sinh \gamma x}\cosh (\gamma -\alpha -\beta )x + \frac{\sinh (\pi -\gamma )x} {\sinh \gamma x} \cosh (\alpha -\beta )x\bigg], {}\\ \end{array}$$

    in which \(A = ae^{\sqrt{-1}\alpha }\), \(B = be^{\sqrt{-1}\beta }\), and K is the usual modified Bessel function. The corner correction \((\pi ^{2} -\gamma ^{2})/24\pi \gamma\) follows easily, and this jibes with Kac’s integral upon applying Parseval’s formula to the latter.

  2. 2.

    As before • stands for the one-sided partial in the positive 1-direction perpendicular to B. To prove that \((g^{11}\det g)^{\bullet }\sqrt{g_{11}}/\det g\) is (double) the spur of the second fundamental form of B, it is preferable to further specialize the local coordinates on U so as to make

    $$\displaystyle\begin{array}{rcl} g = \left (\begin{array}{*{10}c} g_{11} & 0\\ 0 & h \end{array} \right )\mbox{ on }U\quad \mbox{ and}\quad g_{11} = 1\mbox{ on }U \cap B.& & {}\\ \end{array}$$

    The second fundamental form f is the (Riemannian) gradient along B of the inward-pointing unit normal field n:

    $$\displaystyle\begin{array}{rcl} f_{ij} = \frac{\partial n_{i}} {\partial x_{j}} +\Big\{\begin{array}{*{10}c} i\\ jk \end{array} \Big\}n_{k} =\Big\{\begin{array}{*{10}c} i\\ 1j \end{array} \Big\} = \mbox{ the Christoffel bracket}\quad (i,j \geq 2).& & {}\\ \end{array}$$

    Computing this for the special g adopted above gives \(\frac{1} {2}h^{-1}h^{\bullet }\), so that double the spur is

    $$\displaystyle\begin{array}{rcl} \mathop{\mathrm{sp}}\nolimits h^{-1}h^{\bullet } = (\lg \det h)^{\bullet } =\big (\lg g^{11}\det g\big)^{\bullet } =\big (g^{11}\det g\big)^{\bullet }/\det g,& & {}\\ \end{array}$$

    as desired (\(g^{11} = g_{11} = 1\) on B).

Bibliography

  1. M. Berger. Sur le spectre d’une variètè riemanniene. C. R. Acad. Sci. Paris Sèr. A-B, 263:A13–A16, 1966.

    Google Scholar 

  2. G. Borg. Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe Bestimmung der Differentialgleihung durch die Eigenwerte. Acta Math., 78:1–96, 1946.

    Article  MathSciNet  MATH  Google Scholar 

  3. È Cartan. Leçons sur la Gèomètrie des Espaces de Riemann. Gauthier-Villars, 1928.

    MATH  Google Scholar 

  4. S. S. Chern. A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann. of Math., 2:747–752, 1944.

    Article  Google Scholar 

  5. G. de Rham. Variètès Diffèrentiables. Hermann, Paris, 1960.

    MATH  Google Scholar 

  6. M. Kac. Can you hear the shape of a drum? Amer. Math. Monthly, 73:1–23, 1966.

    Article  MATH  Google Scholar 

  7. H. P. McKean. Kramers-Wannier duality for the 2-dimensional Ising model as an instance of Poisson’s summation formula. J. Math. Phys., 5:775–776, 1964.

    Article  MathSciNet  Google Scholar 

  8. J. Milnor. Eigenvalues of the Laplace operator on certain manifolds. Proc. Nat. Acad. Sci., 51:542, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Minakshisundaram. A generalization of the Epstein zeta function. Canadian J. Math., 1:320–327, 1949.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Minakshisundaram. Eigenfunctions on Riemannian manifolds. J. Indian Math. Soc. (N. S.), 17:159–163, 1953.

    Google Scholar 

  11. S. Minakshisundaram and A. Pleijel. Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds. Canadian J. Math., 1:242–256, 1949.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Nelson. The adjoint Markoff process. Duke Math. J., 25:671–690, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Pleijel. A study of certain Green’s functions with applications in the theory of vibrating membranes. Ark. Mat., 2:553–569, 1954.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Seeley. The power A s of an elliptic operator A. The University of Michigan, 1966.

    Google Scholar 

  15. S. R. S. Varadhan. Diffusion processes in small time intervals. Comm. Pure Appl. Math., 20:659–685, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Weitzenböck. Invariantentheorie. P. Noordhoff, Groningen, 1923.

    Google Scholar 

  17. H. Weyl. Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers. Rend. Circ. Mat. Palermo, 39:1–50, 1915.

    Article  MATH  Google Scholar 

  18. H. Weyl. The Classical Groups. Princeton University Press, New Jersey, 1946.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McKean, H.P., Singer, I.M. (2015). Curvature and the Eigenvalues of the Laplacian. In: Grünbaum, F., van Moerbeke, P., Moll, V. (eds) Henry P. McKean Jr. Selecta. Contemporary Mathematicians. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-22237-0_6

Download citation

Publish with us

Policies and ethics