Skip to main content

Introduction and Theoretical Background

  • Chapter
  • First Online:
Quantum Entanglement of Complex Structures of Photons

Part of the book series: Springer Theses ((Springer Theses))

  • 1151 Accesses

Abstract

The nature of light and its main properties, either seen classically as an electromagnetic wave or quantum mechanically as a photon, is not only the focus of much ongoing research, but has been covered by many excellent textbooks. Thus, only a short introduction to the theory will be conducted in the following chapter mainly to establish the employed nomenclature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The derivation from the Maxwell equations can be found for example in the textbook [4] or the thesis of A. Mair [5].

  2. 2.

    A detailed derivation can be found e.g. in [3, 17].

  3. 3.

    A more detailed description can be found here [18].

  4. 4.

    This effect is similar to the rotation of the intensity mentioned earlier, if two LG modes with different Gouy phase are superposed.

  5. 5.

    Although the square shaped modes might not be a simple solution to the PWE, they should be describable with a complex superposition of many “simple” modes (maybe an infinite sum of modes). This stems from the fact that all earlier discussed modes form a complete set of spatial modes. Thus, they are able to describe any paraxial light field. A more detailed discussion however is outside of the scope of this thesis.

  6. 6.

    I abstain from discussing in detail the more realistic description of physical states in terms of density matrices for mixed states and only refer the reader to the corresponding literature [52, 54]. Nevertheless, the simplifying assumption of pure states is a very good approximation to all real physical systems in the presented results. Thus, all drawn conclusions hold.

  7. 7.

    Note that even single higher-dimensional systems—so-called qudit states—could also be used to justify the statement (for example it was shown for single qutrits in [57]). However, they are not in the scope of this thesis, where qubit systems are the focus of all investigations.

  8. 8.

    Although multi-partite systems of more than two parties can form very interesting in quantum states, e.g. GHZ states [58], they are not in the scope of this thesis.

  9. 9.

    Without explaining the concept of local realism in more detail, I use the modern, standard way of defining locality, i.e. two space-like separated systems cannot influence each other faster than the speed of light, and realism, i.e. measurable properties do not exist before and independent of the measurements.

References

  1. Born, M., & Wolf, E. (1999). Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. CUP Archive.

    Google Scholar 

  2. Saleh, B. E. A., Teich, M. C., & Saleh, B. E. (1991). Fundamentals of photonics (Vol. 22). New York: Wiley.

    Book  Google Scholar 

  3. Siegman, A. E. (1986). Lasers (Vol. 37). Mill Valley, CA: University Science Books.

    Google Scholar 

  4. Andrews, D. L., & Babiker, M. (2012). The angular momentum of light. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  5. Mair, A. (2000). Nichtlokale und Singuläre Quantenzustände des Lichtsd. Ph.D. thesis, Institut für Experimentalphysik der Universität Wien.

    Google Scholar 

  6. Lax, M., Louisell, W. H., & McKnight, W. B. (1975). From maxwell to paraxial wave optics. Physical Review A, 11, 1365.

    Article  ADS  Google Scholar 

  7. Davis, L. W. (1979). Theory of electromagnetic beams. Physical Review A, 19, 1177.

    Article  ADS  Google Scholar 

  8. Bialynicki-Birula, I., & Bialynicka-Birula, Z. (2013). The role of the Riemann-Silberstein vector in classical and quantum theories of electromagnetism. Journal of Physics A: Mathematical and Theoretical, 46, 053001.

    Article  MathSciNet  ADS  Google Scholar 

  9. Moon, P., & Spencer, D. E. (1971). Eleven coordinate systems. Field theory handbook (Vol. 1). Berlin: Springer.

    Chapter  Google Scholar 

  10. Krenn, M. (2012). Investigation of complex spatial mode structures of photons. Master’s thesis, Technische Universität Wien.

    Google Scholar 

  11. Bandres, M. A., Gutiérrez-Vega, J. C., & Chávez-Cerda, S. (2004). Parabolic nondiffracting optical wave fields. Optics Letters, 29, 44.

    Article  ADS  Google Scholar 

  12. López-Mariscal, C., Bandres, M., Gutiérrez-Vega, J., & Chávez-Cerda, S. (2005). Observation of parabolic nondiffracting optical fields. Optics Express, 13, 2364.

    Article  ADS  Google Scholar 

  13. Bandres, M. A., & Gutiérrez-Vega, J. C. (2007). Cartesian beams. Optics Letters, 32, 3459.

    Article  ADS  Google Scholar 

  14. Bandres, M. A., & Gutiérrez-Vega, J. C. (2008). Circular beams. Optics Letters, 33, 177.

    Article  ADS  Google Scholar 

  15. Bandres, M. A., & Gutiérrez-Vega, J. C. (2008). Elliptical beams. Optics Express, 16, 21087.

    Article  ADS  Google Scholar 

  16. Bandres, M. A., & Gutiérrez-Vega, J. C. (2004). Ince Gaussian beams. Optics Letters, 29, 144.

    Article  ADS  Google Scholar 

  17. Pampaloni, F., & Enderlein, J. (2004). Gaussian, Hermite-Gaussian, and Laguerre-Gaussian beams: A primer, arXiv preprint physics/0410021.

  18. Langford, N. K. (2007). Encoding, manipulating and measuring quantum information in optics. Ph.D. thesis, University of Queensland.

    Google Scholar 

  19. Franke-Arnold, S., Allen, L., & Padgett, M. (2008). Advances in optical angular momentum. Laser and Photonics Reviews, 2, 299.

    Article  Google Scholar 

  20. López-Mariscal, C., & Gutiérrez-Vega, J. C. (2007). Propagation dynamics of helical Hermite-Gaussian beams. In Proceedings of SPIE (Vol. 6663).

    Google Scholar 

  21. Plick, W. N., Krenn, M., Fickler, R., Ramelow, S., & Zeilinger, A. (2013). Quantum orbital angular momentum of elliptically symmetric light. Physical Review A, 87, 033806.

    Article  ADS  Google Scholar 

  22. Poynting, J. H. (1909). The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proceedings of the Royal Society of London A, 82, 560.

    Article  ADS  MATH  Google Scholar 

  23. Beth, R. A. (1936). Mechanical detection and measurement of the angular momentum of light. Physical Review, 50, 115.

    Article  ADS  Google Scholar 

  24. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C., & Woerdman, J. P. (1992). Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185.

    Article  ADS  Google Scholar 

  25. He, H., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (1995). Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms. Journal of Modern Optics, 42, 217.

    Article  ADS  Google Scholar 

  26. He, H., Friese, M., Heckenberg, N., & Rubinsztein-Dunlop, H. (1995). Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Physical Review Letters, 75, 826.

    Article  ADS  Google Scholar 

  27. O’neil, A., MacVicar, I., Allen, L., & Padgett, M. (2002). Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Physical Review Letters, 88, 053601.

    Article  ADS  Google Scholar 

  28. Allen, L., Barnett, S. M., & Padgett, M. J. (2003). Optical angular momentum. Boca Raton: Taylor & Francis.

    Book  Google Scholar 

  29. Calvo, G. F., Picón, A., & Bagan, E. (2006). Quantum field theory of photons with orbital angular momentum. Physical Review A, 73, 013805.

    Article  ADS  Google Scholar 

  30. Berry, M. V. (2004). Optical vortices evolving from helicoidal integer and fractional phase steps. Journal of Optics A: Pure and Applied Optics, 6, 259.

    Article  ADS  Google Scholar 

  31. Leach, J., Yao, E., & Padgett, M. J. (2004). Observation of the vortex structure of a non-integer vortex beam. New Journal of Physics, 6, 71.

    Article  ADS  Google Scholar 

  32. Zhan, Q. (2009). Cylindrical vector beams: From mathematical concepts to applications. Advances in Optics and Photonics, 1, 1.

    Article  Google Scholar 

  33. Maurer, C., Jesacher, A., Fürhapter, S., Bernet, S., & Ritsch-Marte, M. (2007). Tailoring of arbitrary optical vector beams. New Journal of Physics, 9, 78.

    Article  ADS  Google Scholar 

  34. Galvez, E. J., Khadka, S., Schubert, W. H., & Nomoto, S. (2012). Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light. Applied Optics, 51, 2925.

    Article  ADS  Google Scholar 

  35. Kano, H., Mizuguchi, S., & Kawata, S. (1998). Excitation of surface-plasmon polaritons by a focused laser beam. Journal of the Optical Society of America B, 15, 1381.

    Article  ADS  Google Scholar 

  36. Chen, W., & Zhan, Q. (2007). Optimal plasmonic focusing with radial polarization. In Proceedings of SPIE (Vol. 6450, p. 64500D).

    Google Scholar 

  37. Quabis, S., Dorn, R., Eberler, M., Glöckl, O., & Leuchs, G. (2000). Focusing light to a tighter spot. Optics Communications, 179, 1.

    Article  ADS  Google Scholar 

  38. Dorn, R., Quabis, S., & Leuchs, G. (2003). Sharper focus for a radially polarized light beam. Physical Review Letters, 91, 233901.

    Article  ADS  Google Scholar 

  39. Sondermann, M., et al. (2007). Design of a mode converter for efficient light-atom coupling in free space. Applied Physics B, 89, 489.

    Article  Google Scholar 

  40. Golla, A., et al. (2012). Generation of a wave packet tailored to efficient free space excitation of a single atom. The European Physical Journal D, 66, 1.

    Article  ADS  Google Scholar 

  41. Beckley, A. M., Brown, T. G., & Alonso, M. A. (2010). Full poincaré beams. Optics Express, 18, 10777.

    Article  ADS  Google Scholar 

  42. Nye, J. F. (1983). Lines of circular polarization in electromagnetic wave fields. Proceedings of the Royal Society of London A, 389, 279.

    Article  MathSciNet  ADS  Google Scholar 

  43. Freund, I. (2001). Polarization flowers. Optics Communications, 199, 47.

    Article  ADS  Google Scholar 

  44. Freund, I., Soskin, M. S., & Mokhun, A. I. (2002). Elliptic critical points in paraxial optical fields. Optics Communications, 208, 223.

    Article  ADS  Google Scholar 

  45. Dennis, M. R. (2002). Polarization singularities in paraxial vector fields: morphology and statistics. Optics Communications, 213, 201.

    Article  ADS  Google Scholar 

  46. Soskin, M. S., Denisenko, V., & Freund, I. (2003). Optical polarization singularities and elliptic stationary points. Optics Letters, 28, 1475.

    Article  ADS  Google Scholar 

  47. Cardano, F., Karimi, E., Marrucci, L., de Lisio, C., & Santamato, E. (2013). Generation and dynamics of optical beams with polarization singularities. Optics Express, 21, 8815.

    Article  ADS  Google Scholar 

  48. Berry, M. V., & Hannay, J. H. (1977). Umbilic points on Gaussian random surfaces. Journal of Physics A: Mathematical and General, 10, 1809.

    Article  ADS  Google Scholar 

  49. O’Brien, J. L. (2007). Optical quantum computing. Science, 318, 1567.

    Article  ADS  Google Scholar 

  50. O’Brien, J. L., & Akira Furusawa, J. V. (2009). Photonic quantum technologies. Nature Photonics, 3, 687.

    Article  ADS  Google Scholar 

  51. Aspuru-Guzik, A., & Walther, P. (2012). Photonic quantum simulators. Nature Physics, 8, 285.

    Article  ADS  Google Scholar 

  52. Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  53. Bouwmeester, D., Ekert, A. K., & Zeilinger, A. (2000). The physics of quantum information (Vol. 38). Berlin: Springer.

    Book  MATH  Google Scholar 

  54. Audretsch, J. (2008). Entangled systems. Wiley.com.

    Google Scholar 

  55. Scully, M. O., & Zubairy, S. (1997). Quantum optics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  56. Altepeter, J. B., Jeffrey, E. R., & Kwiat, P. G. (2005). Photonic state tomography. Advances in Atomic, Molecular, and Optical Physics, 52, 105.

    Article  ADS  Google Scholar 

  57. Lapkiewicz, R., et al. (2011). Experimental non-classicality of an indivisible quantum system. Nature, 474, 490.

    Article  Google Scholar 

  58. Greenberger, D. M., Horne, M. A., & Zeilinger, A. (1989). Going beyond bell’s theorem. Bell’s theorem, quantum theory and conceptions of the universe (Vol. 69). Berlin: Springer.

    Google Scholar 

  59. Horodecki, R., Horodecki, P., Horodecki, M., & Horodecki, K. (2009). Quantum entanglement. Reviews of Modern Physics, 81, 865.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Rarity, J. G., & Tapster, P. R. (1990). Experimental violation of bellś inequality based on phase and momentum. Physical Review Letters, 64, 2495.

    Article  ADS  Google Scholar 

  61. Kwiat, P. G., Steinberg, A. M., & Chiao, R. Y. (1993). High-visibility interference in a bell-inequality experiment for energy and time. Physical Review A, 47, R2472.

    Article  ADS  Google Scholar 

  62. Howell, J. C., Bennink, R. S., Bentley, S. J., & Boyd, R. W. (2004). Realization of the Einstein-Podolsky-Rosen paradox using momentum-and position-entangled photons from spontaneous parametric down conversion. Physical Review Letters, 92, 210403.

    Article  ADS  Google Scholar 

  63. Ramelow, S., Ratschbacher, L., Fedrizzi, A., Langford, N. K., & Zeilinger, A. (2009). Discrete tunable color entanglement. Physical Review Letters, 103, 253601.

    Article  ADS  Google Scholar 

  64. Brendel, J., Gisin, N., Tittel, W., & Zbinden, H. (1999). Pulsed energy-time entangled twin-photon source for quantum communication. Physical Review Letters, 82, 2594.

    Article  ADS  Google Scholar 

  65. de Riedmatten, H., et al. (2004). Tailoring photonic entanglement in high-dimensional Hilbert spaces. Physical Review A, 69, 050304.

    Article  Google Scholar 

  66. Rossi, A., Vallone, G., Chiuri, A., De Martini, F., & Mataloni, P. (2009). Multipath entanglement of two photons. Physical Review Letters, 102, 153902.

    Article  ADS  Google Scholar 

  67. Schaeff, C., et al. (2012). Scalable fiber integrated source for higher-dimensional path-entangled photonic qunits. Optics Express, 20, 16145.

    Article  ADS  Google Scholar 

  68. Zeilinger, A., Weihs, G., Jennewein, T., & Aspelmeyer, M. (2005). Happy centenary, photon. Nature, 433, 230.

    Article  ADS  Google Scholar 

  69. Padgett, M. J., & Courtial, J. (1999). Poincaré-sphere equivalent for light beams containing orbital angular momentum. Optics Letters, 24, 430.

    Article  ADS  Google Scholar 

  70. Mair, A., Vaziri, A., Weihs, G., & Zeilinger, A. (2001). Entanglement of the orbital angular momentum states of photons. Nature, 412, 313.

    Article  ADS  Google Scholar 

  71. Vaziri, A., Weihs, G., & Zeilinger, A. (2002). Experimental two-photon, three-dimensional entanglement for quantum communication. Physical Review Letters, 89, 240401.

    Article  ADS  Google Scholar 

  72. Langford, N. K., et al. (2004). Measuring entangled qutrits and their use for quantum bit commitment. Physical Review Letters, 93, 053601.

    Article  ADS  Google Scholar 

  73. Molina-Terriza, G., Vaziri, A., Ursin, R., & Zeilinger, A. (2005). Experimental quantum coin tossing. Physical Review Letters, 94, 040501.

    Article  ADS  Google Scholar 

  74. Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G., & Zeilinger, A. (2006). Experimental quantum cryptography with qutrits. New Journal of Physics, 8, 75.

    Article  ADS  Google Scholar 

  75. Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J., & Andersson, E. (2011). Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities. Nature Physics, 7, 677.

    Article  ADS  Google Scholar 

  76. Krenn, M., et al. (2014). Generation and confirmation of a (100 \(\times \) 100)-dimensional entangled quantum system. Proceedings of the National Academy of Sciences, 11, 6243.

    Article  ADS  Google Scholar 

  77. Jack, B., et al. (2011). Demonstration of the angular uncertainty principle for single photons. Journal of Optics, 13, 064017.

    Article  ADS  Google Scholar 

  78. Leach, J., et al. (2010). Quantum correlations in optical angle-orbital angular momentum variables. Science, 329, 662.

    Article  ADS  Google Scholar 

  79. McLaren, M., et al. (2012). Entangled Bessel-Gaussian beams. Optics Express, 20, 23589.

    Article  ADS  Google Scholar 

  80. Krenn, M., et al. (2013). Entangled singularity patterns of photons in Ince-Gauss modes. Physical Review A, 87, 012326.

    Article  ADS  Google Scholar 

  81. Gühne, O., & Tóth, G. (2009). Entanglement detection. Physics Reports, 474, 1–75.

    Article  MathSciNet  ADS  Google Scholar 

  82. Schrödinger, E. (1935). Discussion of probability relations between separated systems. Proceedings of the Cambridge Philosophical Society, 31, 555.

    Article  ADS  Google Scholar 

  83. Wiseman, H. M., Jones, S. J., & Doherty, A. C. (2007). Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Physical Review Letters, 98, 140402.

    Article  MathSciNet  ADS  Google Scholar 

  84. Jones, S. J., Wiseman, H. M., & Doherty, A. C. (2007). Entanglement, Einstein-Podolsky-Rosen correlations, bell nonlocality, and steering. Physical Review A, 76, 052116.

    Article  MathSciNet  ADS  Google Scholar 

  85. Cavalcanti, E. G., Jones, S. J., Wiseman, H. M., & Reid, M. (2009). Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox. Physical Review A, 80, 032112.

    Article  ADS  Google Scholar 

  86. Saunders, D. J., Jones, S. J., Wiseman, H. M., & Pryde, G. J. (2010). Experimental EPR-steering using bell-local states. Nature Physics, 6, 845.

    Article  ADS  Google Scholar 

  87. Smith, D. H., et al. (2012). Conclusive quantum steering with superconducting transition-edge sensors. Nature Communications, 3, 625.

    Article  ADS  Google Scholar 

  88. Wittmann, B., et al. (2012). Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering. New Journal of Physics, 14, 053030.

    Article  ADS  Google Scholar 

  89. Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777.

    Article  ADS  MATH  Google Scholar 

  90. Bell, J. S. (1964). On the Einstein-Podolsky-Rosen paradox. Physics, 1, 195.

    Google Scholar 

  91. Clauser, J. F., Horne, M. A., Shimony, A., & Holt, R. A. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23, 880.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Fickler .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fickler, R. (2016). Introduction and Theoretical Background. In: Quantum Entanglement of Complex Structures of Photons. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22231-8_2

Download citation

Publish with us

Policies and ethics