Skip to main content

The Diphoton Decay Channel in the MSSM and the NMSSM

  • Chapter
  • First Online:
Constraining Supersymmetric Models

Part of the book series: Springer Theses ((Springer Theses))

  • 316 Accesses

Abstract

At the time when the Higgs boson discovery was announced, the two photon decay rate was significantly above the SM expectation. In this chapter we confront the MSSM and the NMSSM with the discovery of a Higgs boson decaying into two photons. In particular we discuss the possibilities in both SUSY models to accommodate a Higgs at 126 GeV with a two-photon rate enhanced with respect to the SM-taking into account constraints from direct Higgs searches, flavour physics, electroweak measurements as well as theoretical considerations. We discuss in detail how an enhanced two photon rate can be realised in the MSSM, and which additional mechanisms for an enhancement occur in the NMSSM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This ratio corresponds to the Higgs signal strength which is denoted \(\mu \) in other chapters of this thesis.

  2. 2.

    Non-negligible differences are mainly expected if the bottom loop contribution to \(h_i\rightarrow gg\) dominates over the top loop contribution. In the case of the light \(\mathcal{CP}\)-even Higgs boson this can happen for very low \(M_A\) and moderate to large \(\tan \beta \) values, whereas in the case of the heavy \(\mathcal{CP}\)-even Higgs boson this can happen for larger \(M_A\) and \(\tan \beta \gtrsim 5\). Our results therefore exhibit an additional uncertainly in this part of the parameter space. Additional loop contributions from SUSY particles, while taken into account in our calculation, are usually subdominant and of lesser importance in this context.

  3. 3.

    See Sect. 5.4.2 for a brief discussion on the calculation of sparticle masses in NMSSMTools.

  4. 4.

    Updated numbers for the flavour physics observables, as given e.g. in [23] (including in particular LHC measurements) were not available at the time when this analysis was performed. The same is true for the measurement of \(\mathrm{BR}(B_s \rightarrow \mu ^- \mu ^+)\) [24, 25], which is therefore not included here.

  5. 5.

    This feature would be avoided with an on-shell renormalisation of \(M_{H^\pm }\), see e.g. [12, 32]. There are different possibilities how to relate MSSM with NMSSM parameter points. The method chosen here differs from the one used in Sect. 5.8 which implied that the value for the charged Higgs (pole) mass is identical in the MSSM and the NMSSM.

  6. 6.

    We neglect here, and in the following plots in this chapter, the theory uncertainty of the Higgs boson mass evaluation, which for the light Higgs boson should be roughly at the level of 2–3 GeV [34].

  7. 7.

    In this chapter we presented results for \(WW^{(*)}\) only in the NMSSM. In the next chapter we will show results for \(WW^{(*)}\) also in the MSSM.

References

  1. ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, 1–29 (2012). arXiv:1207.7214

  2. CMS Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B716, 30–61 (2012). arXiv:1207.7235

  3. ATLAS Collaboration, ATLAS-CONF-2013-030

    Google Scholar 

  4. CMS Collaboration, S. Chatrchyan et al., Measurement of Higgs boson production and properties in the \(WW\) decay channel with leptonic final states. JHEP 01, 096 (2014). arXiv:1312.1129

  5. CMS Collaboration, S. Chatrchyan et al., Evidence for the 125 GeV Higgs boson decaying to a pair of \(\tau \) leptons. arXiv:1401.5041

  6. ATLAS Collaboration, ATLAS-CONF-2013-108

    Google Scholar 

  7. CMS Collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks. Phys. Rev. D 89, 012003 (2014). arXiv:1310.3687

  8. ATLAS Collaboration, ATLAS-CONF-2013-079

    Google Scholar 

  9. Tevatron New Physics Higgs Working Group, CDF, DØ, Updated Combination of CDF and DØ Searches for standard model Higgs boson production with up to 10.0 \({\rm fb}^{-1}\) of data. arXiv:1207.0449

  10. ATLAS Collaboration, ATLAS-CONF-2013-012

    Google Scholar 

  11. CMS Collaboration, CMS-PAS-HIG-13-001

    Google Scholar 

  12. K. Ender, T. Graf, M. Mühlleitner, H. Rzehak, Analysis of the NMSSM Higgs Boson masses at one-loop level. Phys. Rev. D85, 075024 (2012). arXiv:1111.4952

    ADS  Google Scholar 

  13. U. Ellwanger, J.F. Gunion, C. Hugonie, NMHDECAY: a Fortran code for the Higgs masses, couplings and decay widths in the NMSSM. JHEP 0502, 066 (2005). hep-ph/0406215

    Google Scholar 

  14. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the tevatron. Comput. Phys. Commun. 182, 2605–2631 (2011). arXiv:1102.1898

    Article  ADS  MATH  Google Scholar 

  15. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Reevaluation of the Hadronic contributions to the Muon \(g-2\) and to \(\alpha (M_Z^2)\). Eur. Phys. J. C71, 1515 (2011). arXiv:1010.4180

    ADS  Google Scholar 

  16. Muon G-2 Collaboration, G. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL. Phys. Rev. D73, 072003 (2006). hep-ex/0602035

  17. J.F. Gunion, D. Hooper, B. McElrath, Light neutralino dark matter in the NMSSM. Phys. Rev. D 73, 015011 (2006). hep-ph/0509024

  18. F. Domingo, U. Ellwanger, Constraints from the Muon \(g-2\) on the parameter space of the NMSSM. JHEP 0807, 079 (2008). arXiv:0806.0733

    Article  ADS  Google Scholar 

  19. G. Degrassi, G. Giudice, QED logarithms in the electroweak corrections to the Muon anomalous magnetic moment. Phys. Rev. D58, 053007 (1998). hep-ph/9803384

  20. S. Heinemeyer, D. Stöckinger, G. Weiglein, Two loop SUSY corrections to the anomalous magnetic moment of the Muon. Nucl. Phys. B690, 62–80 (2004). hep-ph/0312264

    Google Scholar 

  21. S. Heinemeyer, D. Stöckinger, G. Weiglein, Electroweak and supersymmetric two-loop corrections to \((g-2)_{\mu }\). Nucl. Phys. B699, 103–123 (2004). hep-ph/0405255

    Google Scholar 

  22. F. Mahmoudi, J. Rathsman, O. Stål, L. Zeune, Light Higgs bosons in phenomenological NMSSM. Eur. Phys. J. C71, 1608 (2011). arXiv:1012.4490

    Article  ADS  Google Scholar 

  23. Heavy Flavor Averaging Group, Y. Amhis, et al., Averages of B-Hadron, C-Hadron, and tau-lepton properties as of early 2012. arXiv:1207.1158. See: http://www.slac.stanford.edu/xorg/hfag

  24. LHCb Collaboration, R. Aaij et al., Measurement of the \(B^0_s \rightarrow \mu ^+ \mu ^-\) decays at the LHCb experiment. Phys. Rev. Lett. 111, 101805 (2013). arXiv:1307.5024

  25. CMS, LHCb Collaborations, Combination of results on the rare decays \(B^0_{(s)} \rightarrow \mu ^+\mu ^-\) from the CMS and LHCb experiments. Technical report CMS-PAS-BPH-13-007. CERN-LHCb-CONF-2013-012, CERN, Geneva, July 2013

    Google Scholar 

  26. G. Hiller, B physics signals of the lightest CP odd Higgs in the NMSSM at large \(\tan \beta \). Phys. Rev. D70, 034018 (2004). hep-ph/0404220

  27. F. Domingo, U. Ellwanger, Updated constraints from \(B\) physics on the MSSM and the NMSSM. JHEP 0712, 090 (2007). arXiv:0710.3714

    Article  ADS  Google Scholar 

  28. Heavy Flavor Averaging Group, E. Barberio, et al., Averages of \(b-\) Hadron properties at the end of 2005. hep-ex/0603003

  29. CMS, LHCb Collaborations, CMS-PAS-BPH-11-019, LHCb-CONF-2011-047

    Google Scholar 

  30. Heavy Flavor Averaging Group, D. Asner, et al., Averages of \(b\)-lepton properties. arXiv:1010.1589

  31. CDF Collaboration, A. Abulencia et al., Observation of \(B_s^0-\bar{B}+s^0\) Oscillations. Phys. Rev. Lett. 97, 242003 (2006). hep-ex/0609040

  32. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak et al., The Higgs Boson masses and mixings of the complex MSSM in the Feynman-Diagrammatic approach. JHEP 0702, 047 (2007). hep-ph/0611326

    Google Scholar 

  33. Particle Data Group, J. Beringer, et al., Review of particle physics (RPP). Phys. Rev. D86, 010001 (2012). And 2013 partial update for the 2014 edition

    Google Scholar 

  34. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Towards high precision predictions for the MSSM Higgs sector. Eur. Phys. J. C28, 133–143 (2003). hep-ph/0212020

    Google Scholar 

  35. ATLAS Collaboration, ATLAS-CONF-2011-161

    Google Scholar 

  36. CMS Collaboration, CMS-HIG-11-030

    Google Scholar 

  37. S. Heinemeyer, O. Stål, G. Weiglein, Interpreting the LHC Higgs search results in the MSSM. Phys. Lett. B710, 201–206 (2012). arXiv:1112.3026

    Article  ADS  Google Scholar 

  38. ATLAS Collaboration, ATLAS-CONF-2013-090

    Google Scholar 

  39. M. Carena, S. Gori, N.R. Shah, C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the \(\gamma \gamma \) rate. JHEP 1203, 014 (2012). arXiv:1112.3336

    Article  ADS  Google Scholar 

  40. M. Carena, S. Gori, N.R. Shah, C.E. Wagner, L.-T. Wang, Light Stau phenomenology and the Higgs \(\gamma \gamma \) rate. JHEP 1207, 175 (2012). arXiv:1205.5842

    Article  ADS  Google Scholar 

  41. S. Heinemeyer, W. Hollik, G. Weiglein, Decay widths of the neutral CP even MSSM Higgs bosons in the Feynman diagrammatic approach. Eur. Phys. J. C16, 139–153 (2000). hep-ph/0003022

  42. L.J. Hall, R. Rattazzi, U. Sarid, The Top quark mass in supersymmetric SO(10) unification. Phys. Rev. D50, 7048–7065 (1994). hep-ph/9306309

    Google Scholar 

  43. M.S. Carena, M. Olechowski, S. Pokorski, C. Wagner, Electroweak symmetry breaking and bottom—top Yukawa unification. Nucl. Phys. B426, 269–300 (1994). hep-ph/9402253

    Google Scholar 

  44. M.S. Carena, D. Garcia, U. Nierste, C.E. Wagner, Effective Lagrangian for the \(\bar{t} b H^{+}\) interaction in the MSSM and charged Higgs phenomenology. Nucl. Phys. B577, 88–120 (2000). hep-ph/9912516

  45. D. Noth, M. Spira, Higgs Boson couplings to bottom quarks: two-loop supersymmetry-QCD corrections. Phys. Rev. Lett. 101, 181801 (2008). arXiv:0808.0087

    Article  ADS  Google Scholar 

  46. D. Noth, M. Spira, Supersymmetric Higgs Yukawa couplings to bottom quarks at next-to-next-to-leading order. JHEP 1106, 084 (2011). arXiv:1001.1935

    Article  ADS  MATH  Google Scholar 

  47. J. Cao, F. Ding, C. Han, J.M. Yang, J. Zhu, A light Higgs scalar in the NMSSM confronted with the latest LHC Higgs data. JHEP 1311, 018 (2013). arXiv:1309.4939

    Article  ADS  Google Scholar 

  48. U. Ellwanger, Enhanced di-photon Higgs signal in the next-to-minimal supersymmetric standard model. Phys. Lett. B698, 293–296 (2011). arXiv:1012.1201

    Article  ADS  Google Scholar 

  49. J. Cao, Z. Heng, T. Liu, J.M. Yang, Di-photon Higgs signal at the LHC: a comparative study for different supersymmetric models. Phys. Lett. B703, 462–468 (2011). arXiv:1103.0631

    Article  ADS  Google Scholar 

  50. ATLAS Collaboration, G. Aad et al., Search for the Higgs boson in the \(\rm H \rightarrow {WW^{(*)}} \rightarrow {1_v}{1_v}\) decay channel in pp collisions at \({\rm \sqrt{s}}\) = 7 TeV with the ATLAS detector. Phys. Rev. Lett. 108, 111802 (2012). arXiv:1112.2577

  51. CMS Collaboration, CMS-HIG-11-024

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Zeune .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zeune, L. (2016). The Diphoton Decay Channel in the MSSM and the NMSSM. In: Constraining Supersymmetric Models . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22228-8_6

Download citation

Publish with us

Policies and ethics