Skip to main content

Experimental Status

  • Chapter
  • First Online:
Constraining Supersymmetric Models

Part of the book series: Springer Theses ((Springer Theses))

  • 322 Accesses

Abstract

This chapter is dedicated to the status of the results from collider experiments (as by February 2014). After going through some general aspects of collider physics, we briefly summarize the experimental results that are most relevant in the context of this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The LHC collides also heavy ions. Since the results of heavy ion collisions are not directly relevant for this work this possibility of the LHC is not further discussed here.

  2. 2.

    This scenario is challenged by the recent ATLAS bound on light charged Higgs bosons [34] as we will discuss below.

  3. 3.

    Note that not the full plane can accommodate for a Higgs at \(125.6\,\mathrm {GeV}\) and one can impose additional constraints by requiring the light Higgs to be in the experimentally allowed region.

  4. 4.

    However these limits depend on the model assumptions. Relaxing these assumptions, squarks can still be significantly lighter [39].

  5. 5.

    While finalizing this thesis a combination of Tevatron and LHC measurements of \(m_t\) became available [52]. The combined value is \(173.34\pm 0.27\pm 0.71\,\mathrm {GeV}\).

References

  1. ALEPH Collaboration, A. Heister et al., Search for supersymmetric particles with R parity violating decays in \(e^{+} e^{-}\) up to 209 GeV. Eur. Phys. J. C31, 1–16 (2003). arXiv:hep-ex/0210014

  2. DELPHI Collaboration, J. Abdallah et al., Searches for supersymmetric particles in \(e^+ e^-\) collisions up to 208 GeV and interpretation of the results within the MSSM. Eur. Phys. J. C31, 421–479 (2003). arXiv:hep-ex/0311019

  3. OPAL Collaboration, G. Abbiendi et al., Search for anomalous production of dilepton events with missing transverse momentum in \(e^+ e^-\) = 183 GeV to 209 GeV. Eur. Phys. J. C32, 453–473 (2004). arXiv:hep-ex/0309014

  4. L3 Collaboration, P. Achard et al., Search for scalar leptons and scalar quarks at LEP. Phys. Lett. B580, 37–49 (2004). arXiv:hep-ex/0310007

  5. ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group, A Combination of preliminary electroweak measurements and constraints on the standard model. arXiv:hep-ex/0612034

  6. CDF Collaboration, F. Abe et al., Observation of top quark production in \(\bar{p}p\) collisions. Phys. Rev. Lett. 74, 2626–2631 (1995). arXiv:hep-ex/9503002

  7. DØ Collaboration, S. Abachi et al., Observation of the top quark. Phys. Rev. Lett. 74, 2632–2637 (1995). arXiv:hep-ex/9503003

  8. Tevatron Electroweak Working Group, 2012 update of the combination of CDF and DØ results for the mass of the W Boson. arXiv:1204.0042

  9. M. Bahr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamilton et al., Herwig++ physics and manual. Eur. Phys. J. C58, 639–707 (2008). arXiv:0803.0883

    Article  ADS  Google Scholar 

  10. T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006). arXiv:hep-ph/0603175

    Google Scholar 

  11. T. Sjostrand, S. Mrenna, P.Z. Skands, A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852–867 (2008). arXiv:0710.3820

    Google Scholar 

  12. F. Siegert, Monte-Carlo event generation for the LHC. Ph.D. thesis (2010)

    Google Scholar 

  13. ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, 1–29 (2012). arXiv:1207.7214

  14. CMS Collaboration, S. Chatrchyan et al., Observation of a new Boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B716, 30–61 (2012). arXiv:1207.7235

  15. ATLAS Collaboration, S.M. Consonni, Higgs search at ATLAS. arXiv:1305.3315

  16. LHC Higgs Cross Section Working Group, S. Heinemeyer, et al., Handbook of LHC Higgs cross sections: 3. Higgs properties. arXiv:1307.1347. See: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

  17. ATLAS Collaboration, ATLAS-CONF-2013-012

    Google Scholar 

  18. CMS Collaboration, CMS-PAS-HIG-13-001

    Google Scholar 

  19. ATLAS Collaboration, ATLAS-CONF-2013-013

    Google Scholar 

  20. CMS Collaboration, S. Chatrchyan et al., Measurement of the properties of a Higgs boson in the four-lepton final state. arXiv:1312.5353

  21. ATLAS Collaboration, ATLAS-CONF-2013-030

    Google Scholar 

  22. CMS Collaboration, S. Chatrchyan et al., Measurement of Higgs boson production and properties in the \(WW\) decay channel with leptonic final states. JHEP 01, 096 (2014). arXiv:1312.1129

  23. Tevatron New Physics Higgs Working Group, CDF, DØ, Updated combination of CDF and DØ searches for standard model Higgs boson production with up to 10.0 fb\(^{-1}\) of data. arXiv:1207.0449

  24. CMS Collaboration, S. Chatrchyan et al., Evidence for the 125 GeV Higgs boson decaying to a pair of \(\tau \) leptons. arXiv:1401.5041

  25. ATLAS Collaboration, ATLAS-CONF-2013-108

    Google Scholar 

  26. ATLAS Collaboration, ATLAS-CONF-2013-034

    Google Scholar 

  27. CMS Collaboration, See: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

  28. ATLAS Collaboration, ATLAS-CONF-2013-014, ATLAS-COM-CONF-2013-025

    Google Scholar 

  29. CMS Collaboration, CMS-PAS-HIG-13-005

    Google Scholar 

  30. ATLAS Collaboration, G. Aad et al., Evidence for the spin-0 nature of the Higgs boson using ATLAS data. Phys. Lett. B726, 120–144 (2013). arXiv:1307.1432

  31. CMS Collaboration, CMS-PAS-HIG-13-016

    Google Scholar 

  32. S. Heinemeyer, O. Stål, G. Weiglein, Interpreting the LHC Higgs search results in the MSSM. Phys. Lett. B710, 201–206 (2012). arXiv:1112.3026

    Article  ADS  Google Scholar 

  33. M. Carena, S. Heinemeyer, O. Stål, C. Wagner, G. Weiglein, MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle. Eur. Phys. J. C73, 2552 (2013). arXiv:1302.7033

    Article  ADS  Google Scholar 

  34. ATLAS Collaboration, ATLAS-CONF-2013-090

    Google Scholar 

  35. ATLAS Collaboration, See: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

  36. D.S. Alves, E. Izaguirre, J.G. Wacker, Where the sidewalk ends: jets and missing energy search strategies for the 7 TeV LHC. JHEP 1110, 012 (2011). arXiv:1102.5338

    Article  ADS  Google Scholar 

  37. ATLAS Collaboration, H. Okawa, Interpretations of SUSY searches in ATLAS with simplified models. arXiv:1110.0282

  38. CMS Collaboration, S. Chatrchyan et al., Interpretation of searches for supersymmetry with simplified models. Phys. Rev. D88, 052017 (2013). arXiv:1301.2175

  39. R. Mahbubani, M. Papucci, G. Perez, J.T. Ruderman, A. Weiler, Light non-degenerate squarks at the LHC. arXiv:1212.3328

  40. CDF Collaboration, T. Aaltonen et al., Precise measurement of the W-boson mass with the CDF II detector. arXiv:1203.0275

  41. DØ Collaboration, V. M. Abazov et al., Measurement of the W Boson mass with the DØ detector. arXiv:1203.0293

  42. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group, S. Schael, et al., Precision electroweak measurements on the \(Z\) resonance. Phys. Rep. 427, 257–454 (2006). arXiv:hep-ex/0509008. See: http://lepewwg.web.cern.ch/LEPEWWG/

  43. Tevatron Electroweak Working Group, CDF, DØ, Combination of CDF and DØ results on the mass of the top quark using up to 5.8 fb-1 of data. arXiv:1107.5255

  44. ATLAS, CMS Collaborations, ATLAS-CONF-2013-102, CMS PAS TOP-13-005

    Google Scholar 

  45. ATLAS Collaboration, ATLAS-CONF-2013-046

    Google Scholar 

  46. ATLAS Collaboration, ATLAS-CONF-2013-077

    Google Scholar 

  47. CMS Collaboration, S. Chatrchyan et al., Measurement of the top-quark mass in \(t\bar{t}\) events with lepton+jets final states in \(pp\) collisions \(\sqrt{s}=7\) TeV. JHEP 1212, 105 (2012). arXiv:1209.2319

  48. CMS Collaboration, S. Chatrchyan et al., Measurement of the top-quark mass in \(t\bar{t}\) events with dilepton final states in \(pp\) collisions \(\sqrt{s}=7\) TeV. Eur. Phys. J. C72, 2202 (2012). arXiv:1209.2393

  49. CMS Collaboration, S. Chatrchyan et al., Measurement of the top-quark mass in all-jets \(t\bar{t} =7\) TeV. arXiv:1307.4617

  50. CMS Collaboration, S. Chatrchyan et al., Measurement of masses in the \(t \bar{t}\) system by kinematic endpoints in pp collisions at \(\sqrt{s}=7\) TeV. Eur. Phys. J. C73, 2494 (2013). arXiv:1304.5783

  51. CMS Collaboration, CMS-PAS-TOP-12-030

    Google Scholar 

  52. ATLAS, CDF, CMS, DØ Collaborations, First combination of Tevatron and LHC measurements of the top-quark mass. arXiv:1403.4427

  53. S. Heinemeyer, S. Kraml, W. Porod, G. Weiglein, Physics impact of a precise determination of the top quark mass at an \(e^{+} e^{-}\) linear collider. JHEP 0309, 075 (2003). arXiv:hep-ph/0306181

  54. P.Z. Skands, D. Wicke, Non-perturbative QCD effects and the top mass at the Tevatron. Eur. Phys. J. C52, 133–140 (2007). arXiv:hep-ph/0703081

    Google Scholar 

  55. A.H. Hoang, I.W. Stewart, Top mass measurements from jets and the Tevatron top-quark mass. Nucl. Phys. Proc. Suppl. 185, 220–226 (2008). arXiv:0808.0222

    Google Scholar 

  56. M. Baak, A. Blondel, A. Bodek, R. Caputo, T. Corbett, et al., Study of electroweak interactions at the energy frontier. arXiv:1310.6708

  57. LHCb Collaboration, R. Aaij et al., Measurement of the \(B^0_s \rightarrow \mu ^+ \mu ^-\) decays at the LHCb experiment. Phys. Rev. Lett. 111, 101805 (2013). arXiv:1307.5024

  58. CMS, LHCb Collaborations, Combination of results on the rare decays \(B^0_{(s)} \rightarrow \mu ^+\mu ^-\) from the CMS and LHCb experiments. Technical report, CMS-PAS-BPH-13-007. CERN-LHCb-CONF-2013-012, CERN, Geneva, July 2013

    Google Scholar 

  59. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Reevaluation of the hadronic contributions to the muon \(g-2\) and to \(\alpha (M_Z^2)\). Eur. Phys. J. C71, 1515 (2011). arXiv:1010.4180

    ADS  Google Scholar 

  60. Muon G-2 Collaboration, G. Bennett et al., Final report of the Muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D73, 072003 (2006). arXiv:hep-ex/0602035

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Zeune .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zeune, L. (2016). Experimental Status. In: Constraining Supersymmetric Models . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22228-8_4

Download citation

Publish with us

Policies and ethics