Skip to main content

The Standard Model and Its Supersymmetric Extensions

  • Chapter
  • First Online:
Constraining Supersymmetric Models

Part of the book series: Springer Theses ((Springer Theses))

  • 326 Accesses

Abstract

This chapter starts with a theoretical introduction to the Standard Model (SM) of particle physics. We outline some shortcomings of the SM, before we turn to the discussion of supersymmetric (SUSY) models. Supersymmetry is motivated and introduced, followed by a detailed description of the particle sectors of the Minimal Supersymmetric Standard Model (MSSM). Then we go to Next-to-minimal Supersymmetric Standard Model (NMSSM) and show how the Higgs and neutralino sectors are modified compared to the MSSM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The subscripts refer to colour, left chirality and weak hypercharge.

  2. 2.

    We adopt the sign conventions for the \(SU(2)_L\) covariant derivative used in the code FeynArts [4–9], where (for historical reasons) the \(SU(2)_L\) covariant derivative in the SM is defined by \(\partial _{\mu } - i g_2 I^a W^a_{\mu }\) (as in Eq. (2.3)), while it is defined by \(\partial _{\mu } + i g_2 I^a W^a_{\mu }\) in the (N)MSSM, as we will discuss later.

  3. 3.

    In the strong sector the gluons of \(SU(3)_C\) are also massless.

  4. 4.

    The concept of renormalization is explained in Sect. 3.2.

  5. 5.

    Note that the vev v of the SM Higgs field differs from the value v which we will define in the MSSM (in Eq. (2.58)) using a different convention. The numerical value here is \(v \sim 246\) GeV.

  6. 6.

    The evidence of neutrino oscillation (see e.g. [10]) implies that neutrinos are (against the original assumption) massive. Introducing right handed neutrinos, Dirac mass terms can easily be added. Another possibility is to write down Majorana mass terms. In this thesis neutrinos can be assumed to be massless.

  7. 7.

    In Sect. 2.1 we used Dirac notation to describe the SM fermions. However it turns out to be more convenient to use the two-component Weyl spinor notation for the fermions in the supermultiplets. For the definition of Weyl fermions see  Ref. [15].

  8. 8.

    As mentioned earlier, we define the \(SU(2)_L\) covariant derivative in the SUSY models with opposite sign than in the SM, following the FeynArts [4–9] conventions.

  9. 9.

    In literature the two Higgs doublets are often called \(H_u \equiv H_2\) and \(H_d \equiv H_1\). For the Higgs doublets we use the same notation for the chiral supermultiplets and for its scalar entry.

  10. 10.

    This scenario is challenged by the recent ATLAS bound on light charged Higgs bosons [27].

  11. 11.

    We consider the \(Z_3\)-symmetric version of the NMSSM, in which no linear or quartic terms in S appear.

References

  1. S. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961)

    Article  Google Scholar 

  2. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967)

    Article  ADS  Google Scholar 

  3. A. Salam, Weak and electromagnetic interactions. Conf. Proc. C680519, 367–377 (1968)

    Google Scholar 

  4. J. Küblbeck, M. Böhm, A. Denner, Feyn arts: computer algebraic generation of Feynman graphs and amplitudes. Comput. Phys. Commun. 60, 165–180 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Denner, H. Eck, O. Hahn, J. Küblbeck, Compact Feynman rules for Majorana fermions. Phys. Lett. B291, 278–280 (1992)

    Google Scholar 

  6. A. Denner, H. Eck, O. Hahn, J. Küblbeck, Feynman rules for fermion number violating interactions. Nucl. Phys. B387, 467–484 (1992)

    Google Scholar 

  7. J. Küblbeck, H. Eck, R. Mertig, Computeralgebraic generation and calculation of Feynman graphs using FeynArts and FeynCalc. Nucl. Phys. Proc. Suppl. 29A, 204–208 (1992)

    ADS  Google Scholar 

  8. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3. Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260

    Article  ADS  MATH  Google Scholar 

  9. T. Hahn, C. Schappacher, The Implementation of the minimal supersymmetric standard model in FeynArts and FormCalc. Comput. Phys. Commun. 143, 54–68 (2002). arXiv:hep-ph/0105349

    Article  ADS  MATH  Google Scholar 

  10. Super-Kamiokande Collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998). arXiv:hep-ex/9807003

  11. WMAP Collaboration, E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538

  12. Planck Collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076

  13. A.G. Cohen, A. De Rujula, S. Glashow, A matter—antimatter universe? Astrophys. J. 495, 539–549 (1998). arXiv:astro-ph/9707087

    Article  ADS  Google Scholar 

  14. R. Haag, J.T. Lopuszanski, M. Sohnius, All possible generators of supersymmetries of the S-matrix. Nucl. Phys. B88, 257 (1975)

    Google Scholar 

  15. I. Aitchison, Supersymmetry in Particle Physics (2007)

    Google Scholar 

  16. L. Girardello, M.T. Grisaru, Soft breaking of supersymmetry. Nucl. Phys. B194, 65 (1982)

    Google Scholar 

  17. S.P. Martin, A Supersymmetry primer. arXiv:hep-ph/9709356

  18. S. Dimopoulos, S.D. Thomas, Dynamical relaxation of the supersymmetric CP violating phases. Nucl. Phys. B465, 23–33 (1996). arXiv:hep-ph/9510220

    Google Scholar 

  19. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak et al., The Higgs Boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach. JHEP 0702, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  20. S. Heinemeyer, O. Stål, G. Weiglein, Interpreting the LHC Higgs search results in the MSSM. Phys. Lett. B710, 201–206 (2012). arXiv:1112.3026

    Google Scholar 

  21. P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein et al., MSSM interpretations of the LHC discovery: light or heavy Higgs? Eur. Phys. J. C73, 2354 (2013). arXiv:1211.1955

  22. A. Bottino, N. Fornengo, S. Scopel, Phenomenology of light neutralinos in view of recent results at the CERN large hadron collider. Phys. Rev. D85, 095013 (2012). arXiv:1112.5666

  23. M. Drees, A supersymmetric explanation of the excess of Higgs-like events at the LHC and at LEP. Phys. Rev. D86, 115018 (2012). arXiv:1210.6507

  24. K. Hagiwara, J.S. Lee, J. Nakamura, Properties of 125 GeV Higgs boson in non-decoupling MSSM scenarios. JHEP 1210, 002 (2012). arXiv:1207.0802

    Article  ADS  Google Scholar 

  25. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery. JHEP 1209, 107 (2012). arXiv:1207.1348

    Article  ADS  Google Scholar 

  26. M. Carena, S. Heinemeyer, O. Stål, C. Wagner, G. Weiglein, MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle. Eur. Phys. J. C73, 2552 (2013). arXiv:1302.7033

  27. ATLAS Collaboration, ATLAS-CONF-2013-090

    Google Scholar 

  28. J.E. Kim, H.P. Nilles, The mu problem and the strong CP problem. Phys. Lett. B138, 150 (1984)

    Google Scholar 

  29. L.J. Hall, D. Pinner, J.T. Ruderman, A natural SUSY Higgs near 126 GeV. JHEP 1204, 131 (2012). arXiv:1112.2703

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Zeune .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zeune, L. (2016). The Standard Model and Its Supersymmetric Extensions. In: Constraining Supersymmetric Models . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22228-8_2

Download citation

Publish with us

Policies and ethics