Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 236 Accesses

Abstract

As explained in Chap. 1, the theory of QCD is able to explain a wide collection of phenomena in particle physics, initiated by strong interactions between partons and consisting in final states of hadronic jets. Many QCD predictions concerning deep inelastic scattering of electron beams colliding on protons and jet physics give a good agreement over a large number of measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a lepton-hadron collision, this formalism is still valid but only one parton density function is obviously included.

  2. 2.

    The renormalization scale is an arbitrary parameter introduced in the theory to treat divergences appearing in loop diagrams.

  3. 3.

    These observables are chosen because they are experimentally accessible down to low \(p_\mathrm{{T}}\) and easy to measure with a tracking system.

  4. 4.

    By separating them in the region with higher and lower activity, it is possible to disentangle even further the UE components.

  5. 5.

    Also a UE measurement in \(b\bar{b}\) pair events is planned in the CMS collaboration and studies at the generator level have been performed [28].

  6. 6.

    Events with a higher number of additional interactions might be also considered and they are thus called “Triple, Quartic, .. Parton Scattering” but their contribution becomes very small. In this work, only the actual DPS will be treated.

  7. 7.

    For instance, in particular scenarios with large spin correlations between the initial-state partons, a modulation on the relative azimuthal angle of the final-state partons appears, while the inclusion of colour correlation adds extra colour factors to the DPS cross section which would change its absolute contribution.

  8. 8.

    A brief description of the main features used is given here for every generator. More information can be found in the quoted references.

  9. 9.

    This is why it is not just LLA but approximate NNL.

  10. 10.

    A wider treatment is given in Appendix D, where results of new UE tunes are described.

  11. 11.

    This formalism uses the same concept of the Sudakov form factor in the parton evolution framework.

  12. 12.

    In particular, if the hard scattering occurs at a scale \(p_\mathrm{{T}_1}\), either a secondary hard interaction or a hard emission from an initial parton take place at the scale \(p_\mathrm{{T}_2}\) \(<\) \(p_\mathrm{{T}_1}\).

References

  1. Curci G et al (1980) Evolution of parton densities beyond leading order: the nonsinglet case. Nucl Phys B 175:27. doi:10.1016/0550-3213(80)90003-6

    Article  ADS  Google Scholar 

  2. Lai H et al (2010a) New parton distributions for collider physics. Phys Rev D 82:074024. doi:10.1103/PhysRevD.82.074024

    Article  ADS  Google Scholar 

  3. Pumplin J et al (2002) New generation of parton distributions with uncertainties from global QCD analysis. JHEP 0207:012. doi:10.1088/1126-6708/2002/07/012

    Article  ADS  Google Scholar 

  4. Aaron FD et al (2010) Combined measurement and QCD analysis of the inclusive \(e^{\pm }\)p scattering cross sections at HERA. JHEP 1001:109. doi:10.1007/JHEP01(2010)109

    Article  ADS  Google Scholar 

  5. Dittmar M et al (2009a) Parton distributions. hep-ph/0901.2504

    Google Scholar 

  6. Beringer J et al (2012a) Review of particle physics (RPP). Phys Rev D 86:010001. doi:10.1103/PhysRevD.86.010001

    Article  ADS  Google Scholar 

  7. Skands P (2012) Introduction to QCD. hep-ph/1207.2389

    Google Scholar 

  8. Ruiz R (2011) Feynman diagrams images, produced with the FeynLib and JaxoDraw software. http://home.fnal.gov/~rruiz/FeynLib/

  9. Andersen JR et al (2010c) The SM and NLO multileg working group: summary report, pp 21–189

    Google Scholar 

  10. Hoeche S et al (2006a) Matching parton showers and matrix elements. hep-ph/0602031

  11. Lönnblad L (2002) Correcting the color dipole cascade model with fixed order matrix elements. JHEP 0205:046. doi:10.1088/1126-6708/2002/05/046

    Article  Google Scholar 

  12. Alwall J et al (2008a) Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur Phys J C 53:473–500. doi:10.1140/epjc/s10052-007-0490-5

    Article  ADS  Google Scholar 

  13. Frixione S et al (2007) Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP 07:070. doi:10.1088/1126-6708/2007/11/070

    Article  Google Scholar 

  14. Nason P, Webber B (2012) Next-to-leading-order event generators. Ann Rev Nucl Part Sci 62:187–213. doi:10.1146/annurev-nucl-102711-094928

    Article  ADS  Google Scholar 

  15. Krauss F (2007) QCD and Monte Carlo tools. In: Talk at the CERN-Fermilab hadron collider physics summer schools

    Google Scholar 

  16. Ackerstaff K et al (1999) Measurements of flavor dependent fragmentation functions in Z0 \(\rightarrow \) q anti-q events. Eur Phys J C 7:369–381. doi:10.1007/s100529901067

    Article  ADS  Google Scholar 

  17. Chatrchyan S et al (2012b) Measurement of the underlying event in the Drell-Yan process in proton-proton collisions at \(\sqrt{s}=7\) TeV. Eur Phys J C 72:2080. doi:10.1140/epjc/s10052-012-2080-4

    Article  ADS  Google Scholar 

  18. Chatrchyan S et al (2013) Measurement of the inelastic proton-proton cross section at \(\sqrt{s}=7\) TeV. Phys Lett B 722:5–27. doi:10.1016/j.physletb.2013.03.024

    Article  ADS  Google Scholar 

  19. Aad G et al (2011a) Measurement of the Inelastic Proton-Proton Cross-Section at \(\sqrt{s}=7\) TeV with the ATLAS Detector. Nature Commun 2:463. doi:10.1038/ncomms1472

    Article  Google Scholar 

  20. Kovner A, Wiedemann UA (2003) Taming the BFKL intercept via gluon saturation. Nucl Phys A 715:871–874. doi:10.1016/S0375-9474(02)01529-4

    Article  ADS  Google Scholar 

  21. CTEQ workshop (2013) From 8 to 14 TeV: What’s needed and why? http://tigger.uic.edu/~varelas/cteq/workshop_2013/

  22. Acosta D et al (2004) The underlying event in hard interactions at the Tevatron \(\bar{p}p\) collider. Phys Rev D 70:072002. doi:10.1103/PhysRevD.70.072002

    Article  ADS  Google Scholar 

  23. Field R et al (2001) Defining maximum and minimum transverse regions to study the underlying event in hard scattering processes. In: CDF Note CDF/ANAL/MIN\_BIAS/CDFR/5626

    Google Scholar 

  24. Aaltonen T et al (2010d) Studying the underlying event in drell-yan and high transverse momentum jet production at the tevatron. Phys Rev D 82:034001. doi:10.1103/PhysRevD.82.034001

    Article  ADS  Google Scholar 

  25. Chatrchyan S et al (2011b) Measurement of the underlying event activity at the LHC with \(\sqrt{s}=7\) TeV. JHEP 1109:109. doi:10.1007/JHEP09(2011)109

  26. Aad G et al (2011c) Measurement of underlying event characteristics using charged particles in pp collisions at \(\sqrt{s} = 900 GeV\) and 7 TeV with the ATLAS detector. Phys Rev D 83:112001. doi:10.1103/PhysRevD.83.112001

    Article  ADS  Google Scholar 

  27. CMS Collaboration (2013a) Study of the underlying event, b-quark fragmentation and hadronization properties in \(t\bar{t}\) events. In: CMS-PAS-TOP-13-007

    Google Scholar 

  28. Delabat Y (2013) Monte Carlo study of the underlying event in b-quark pair production with the CMS detector at the LHC. In: DESY summer student 2013 report, Sept 2013

    Google Scholar 

  29. CMS Collaboration (2014) Measurement of azimuthal correlations between forward and central jets in proton proton collisions at \(\sqrt{s}=7\) TeV. In: CMS-PAS-FSQ-12-008

    Google Scholar 

  30. Chatrchyan S et al (2014a) Measurement of pseudorapidity distributions of charged particles in proton-proton collisions at \(\sqrt{s}=8\) TeV by the CMS and TOTEM experiments

    Google Scholar 

  31. Chatrchyan S et al (2011d) Measurement of energy flow at large pseudorapidities in \(pp\) and 7 TeV. JHEP 1111:148. doi:10.1007/JHEP11(2011)148, 10.1007/JHEP02(2012)055

  32. Paver N, Treleani D (1982) Multi—Quark scattering and large \(p_T\) jet production in hadronic collisions. Nuovo Cim A 70:215. doi:10.1007/BF02814035

    Article  ADS  Google Scholar 

  33. Halzen F et al (1987) Evidence for multiple parton interactions from the observation of multi—muon events in Drell-Yan experiments. Phys Lett B 188:375–378. doi:10.1016/0370-2693(87)91400-6

    Article  ADS  Google Scholar 

  34. Berger E et al (2010e) Characteristics and estimates of double parton scattering at the large hadron collider. Phys Rev D 81:014014. doi:10.1103/PhysRevD.81.014014

    Article  ADS  Google Scholar 

  35. Humpert B, Odorico R (1985) Multiparton scattering and QCD radiation as sources of four jet events. Phys Lett B 154:211. doi:10.1016/0370-2693(85)90587-8

    Article  ADS  Google Scholar 

  36. Ametller L et al (1986) Possible signature of multiple parton interactions in collider four jet events. Phys Lett B 169:289. doi:10.1016/0370-2693(86)90668-4

    Article  ADS  Google Scholar 

  37. Godbole RM et al (1990) Double parton scattering contribution to W+jets. Z Phys C47:69. doi:10.1007/BF01551914

  38. Hussein MY (2007) Double parton scattering in associate Higgs boson production with bottom quarks at hadron colliders. hep-ph/0710.0203

    Google Scholar 

  39. Kom CH et al (2011e) Pair production of J/psi as a probe of double parton scattering at LHCb. Phys Rev Lett 107:082002. doi:10.1103/PhysRevLett. 107.082002

    Article  ADS  Google Scholar 

  40. Calucci G et al (2013b) Double parton scatterings in high-energy proton-nucleus collisions and partonic correlations. hep-ph/1309.6201

    Google Scholar 

  41. Blok B et al (2013c) Hard four-jet production in pA collisions. Eur Phys J C 73(6):2433. doi:10.1140/epjc/s10052-013-2433-7

    Article  ADS  Google Scholar 

  42. Bahr M et al (2013) Extracting sigma\(\_\)effective from the CDF gamma+3jets measurement. JHEP 1303:129. doi:10.1007/JHEP03(2013)129

    Article  ADS  Google Scholar 

  43. Seymour MH, Siodmok A (2013) Extracting sigma\(\_\)effective from the LHCb double-charm measurement. hep-ph/1308.6749

    Google Scholar 

  44. Gaunt JR, Stirling WJ (2010) Double parton distributions incorporating perturbative QCD evolution and momentum and quark number sum rules. JHEP 1003:005. doi:10.1007/JHEP03(2010)005

    Article  ADS  Google Scholar 

  45. Blok B et al (2012c) pQCD physics of multiparton interactions. Eur Phys J C 72:1963. doi:10.1140/epjc/s10052-012-1963-8

    Article  ADS  Google Scholar 

  46. Transverse Strikman M, Structure Nucleon, Interactions Multiparton (2011) Acta Phys Polon B 42:2607–2630. doi:10.5506/APhysPolB.42.2607

    Article  Google Scholar 

  47. Diehl M et al (2014) Correlations in double parton distributions: effects of evolution. JHEP 1405:118. doi:10.1007/JHEP05(2014)118

    Article  ADS  Google Scholar 

  48. Manohar AV, Waalewijn WJ (2012) A QCD analysis of double parton scattering: color correlations, interference effects and evolution. Phys Rev D 85:114009. doi:10.1103/PhysRevD.85.114009

    Article  ADS  Google Scholar 

  49. Diehl M (2014) Multiple hard scattering and parton correlations in the proton. hep-ph/1411.0847

    Google Scholar 

  50. Diehl M, Schäfer A (2011) Theoretical considerations on multiparton interactions in QCD. Phys Lett B 698:389–402. doi:10.1016/j.physletb.2011.03.024

    Article  ADS  Google Scholar 

  51. Collaboration AFS (1987) Double parton scattering in pp collisions at \(\sqrt{s}\) = 63 GeV. Z Phys C 34:163

    Article  Google Scholar 

  52. D0 Collaboration (2010) Double parton interactions in photon+3 jet events in \(p\bar{p}\) = 1.96 TeV. Phys Rev D 82:114030

    Google Scholar 

  53. Abe F et al (1997) Double parton scattering in \(\bar{p}p\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys Rev D 56:3811. doi:10.1103/PhysRevD.56.3811

    Article  ADS  Google Scholar 

  54. Aad G et al (2013e) Measurement of hard double-parton interactions in \(W(\rightarrow l\nu )\)+ 2 jet events at \(\sqrt{s}\)=7 TeV with the ATLAS detector. New J Phys 15:033038. doi:10.1088/1367-2630/15/3/033038

    Article  Google Scholar 

  55. Chatrchyan S et al (2014) Study of double parton scattering using W + 2-jet events in proton-proton collisions at \(\sqrt{s}\) = 7 TeV. JHEP 1403:032. doi:10.1007/JHEP03(2014)032

    Article  ADS  Google Scholar 

  56. Abazov VM et al (2014d) Double parton interactions in photon + 3 jet and photon + b/c jet + 2 jet events in ppbar collisions at \(\sqrt{s}\)=1.96 TeV. Phys Rev D 89:072006. doi:10.1103/PhysRevD.89.072006

    Article  ADS  Google Scholar 

  57. CMS Collaboration (2013b) Measurement of the prompt double J/psi production cross section in pp collisions at \(\sqrt{s}\) = 7 TeV. In: CMS-PAS-BPH-11-021

    Google Scholar 

  58. Sjöstrand T et al (2006b) PYTHIA 6.4 physics and manual. JHEP 0605:026. doi:10.1088/1126-6708/2006/05/026

    Google Scholar 

  59. Sjöstrand T et al (2008) A brief introduction to PYTHIA 8.1. Comput Phys Commun 178:852–867. doi:10.1016/j.cpc.2008.01.036

    Article  ADS  MATH  Google Scholar 

  60. Gieseke S et al (2011f) Herwig++ 2.5 release note. hep-ph/1102.1672

    Google Scholar 

  61. Maltoni F, Stelzer T (2003) MadEvent: automatic event generation with MadGraph. JHEP 02:027. doi:10.1088/1126-6708/2003/02/027

    Article  ADS  Google Scholar 

  62. Alwall J et al (2011) MadGraph 5: going beyond. JHEP 06:128. doi:10.1007/JHEP06(2011)128

    Article  ADS  Google Scholar 

  63. Nason P (2004) A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 04:040. doi:10.1088/1126-6708/2004/11/040

    Article  Google Scholar 

  64. Oleari C (2010) The POWHEG-BOX. Nucl Phys Proc Suppl 205–206:36. doi:10.1016/j.nuclphysbps.2010.08.016

    Article  Google Scholar 

  65. Gleisberg T et al (2009b) Event generation with SHERPA 1.1. JHEP 02:007. doi:10.1088/1126-6708/2009/02/007

    Google Scholar 

  66. Corke R, Sjöstrand T (2010) Multiparton interactions and rescattering. JHEP 01:035. doi:10.1007/JHEP01(2010)035

    Article  ADS  Google Scholar 

  67. Corke R, Sjöstrand T (2011) Interleaved parton showers and tuning prospects. JHEP 03:032. doi:10.1007/JHEP03(2011)032

    Article  ADS  Google Scholar 

  68. Sjöstrand T (2005) New \(p_{\perp }\)-ordered showers and Interleaved multiple interactions. In: Talk at the ATLAS week

    Google Scholar 

  69. Gieseke S et al (2013f) Multiple partonic interactions in Herwig++. Acta Phys Polon Supp 6:613–620. doi:10.5506/APhysPolBSupp.6.613

    Article  Google Scholar 

  70. Gieseke S et al (2012d) Colour reconnections in Herwig++. Eur Phys J C 72:2225. doi:10.1140/epjc/s10052-012-2225-5

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Gunnellini .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gunnellini, P. (2016). A Hadronic Collision. In: Study of Double Parton Scattering Using Four-Jet Scenarios. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22213-4_2

Download citation

Publish with us

Policies and ethics