Skip to main content

Introduction and Literature Review

  • Chapter
  • First Online:
Study of Double Parton Scattering Using Four-Jet Scenarios

Part of the book series: Springer Theses ((Springer Theses))

  • 239 Accesses

Abstract

Our knowledge of the particle physics world is strongly connected to the formulation of the Standard Model (SM) [1]. The SM is a very successful theory which is able to describe a wide class of phenomenona undergone by elementary particles, by including a consistent picture of the interactions experienced by them. One of the considered interactions is called “strong interaction” and, as the name might suggest, it is the one with the largest intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The preliminary results have a reduced phase space, by selecting jets only in the central region, while the published results have an extended jet selection, covering the full pseudorapidity coverage available in CMS.

  2. 2.

    The action is the lagrangian integrated over the time.

  3. 3.

    The convention to indicate antiparticles is to take the name of the corresponding particle and to add a bar on top: for instance, u \(\rightarrow \) \(\bar{u}\), to be read “anti-u” or “u bar”.

  4. 4.

    This is the reason why gauge bosons are generally referred to as “mediators” of a specific interaction.

  5. 5.

    The concept of left- and right-handed particles concerns the relative direction of spin and of momentum of a particle: if they are opposite to each other, the particle is referred as left-handed, while if they point to the same direction, it is called right-handed. This feature is closely related to the concepts of helicity and chirality.

  6. 6.

    The weak isospin values are symmetric for the corresponding antifermions.

  7. 7.

    These factors, which implement the virtual corrections of real emissions due to the 1/z part of the splitting functions, are called non-Sudakov form factors, in contrast with the Sudakov form factors, which, instead, use emissions expressed by 1/(1–z) terms (see Chap. 2).

  8. 8.

    The dependence of the potential includes also a Coulomb term proportional to 1/r for small distances, but it can be neglected at large distances.

  9. 9.

    The other sequential recombination algorithms differs from the anti-\(k_{\text {T}}\) only in the exponent: p \(=\) 1 for the \(k_{\text {T}}\) algorithm [52] and p \(=\) 0 for the Cambridge-Aachen algorithm [53].

  10. 10.

    This is referred to as “collinear factorization” and it is treated in more detail in Chap. 2.

  11. 11.

    A hadronic collision is described in full detail in Chap. 2.

  12. 12.

    Details of the experimental techniques will be given in Chap. 5.

References

  1. Halzen F, Martin AD (1984) Quarks and leptons: an introductory course in modern particle physics. (ISBN-9780471887416)

    Google Scholar 

  2. Halzen F et al (1987) Evidence for multiple parton interactions from the observation of multi—muon events in Drell-Yan experiments. Phys Lett B 188:375–378. doi:10.1016/0370-2693(87)91400-6

    Google Scholar 

  3. Berger E et al (2010) Characteristics and estimates of double parton scattering at the large hadron collider. Phys Rev D 81:014014. doi:10.1103/PhysRevD.81.014014

  4. Godbole RM et al (1990) Double parton scattering contribution to W+jets. Z Phys C 47:69. doi:10.1007/BF01551914

  5. Collaboration AFS (1987) Double parton scattering in pp collisions at \(\sqrt{s}\) = 63 GeV. Z Phys C 34:163

    Article  Google Scholar 

  6. Abe F et al (1993) Study of four jet events and evidence for double parton interactions in \(p\bar{p}\) TeV. Phys Rev D 47:4857–4871. doi:10.1103/PhysRevD.47.4857

    Google Scholar 

  7. D0 Collaboration (2010) Double parton interactions in photon+3 jet events in \(p\bar{p}\) = 1.96 TeV. Phys Rev D 82

    Google Scholar 

  8. Chatrchyan S et al (2014) Study of double parton scattering using W + 2-jet events in proton-proton collisions at \(\sqrt{s}\) = 7 TeV. JHEP 1403:032. doi:10.1007/JHEP03(2014) 032

  9. Aad G et al (2013) Measurement of hard double-parton interactions in \(W(\rightarrow l\nu )\)=7 TeV with the ATLAS detector. New J Phys 15:033038. doi:10.1088/1367-2630/15/3/033038

  10. CMS Collaboration (2013) Measurement of the 4-jet production at the CMS experiment. (CMS-PAS-FSQ-12-013)

    Google Scholar 

  11. Chatrchyan S et al (2014b) Measurement of four-jet production in proton-proton collisions at \(\sqrt{s}\) = 7 TeV. Phys Rev D 89:092010. doi:10.1103/PhysRevD.89.092010

  12. CMS Collaboration (2014) Underlying event tunes and double parton scattering. (CMS-PAS-GEN-14-001)

    Google Scholar 

  13. Dooling S et al (2013) Longitudinal momentum shifts, showering, and nonperturbative corrections in matched next-to-leading-order shower event generators. Phys Rev D 87(9):094009. doi:10.1103/PhysRevD.87.094009

  14. Cipriano P et al (2013) Higgs as a gluon trigger. Phys Rev D 88:097501. doi:10.1103/PhysRevD.88.097501

  15. Taylor CCW (1999) The atomists, Leucippus and democritus: fragments, a text and translation with a commentary. University of Toronto Press Incorporated. ISBN 0-8020-4390-9 pp. 157–158

    Google Scholar 

  16. Wilson E (1952) An introduction to scientific research. McGraw-Hill, New York

    Google Scholar 

  17. Thomson JJ (1897) Cathode rays. Phil Mag 44:293–316. doi:10.1080/14786449708621070

    Google Scholar 

  18. Dahl P (1997) Flash of the Cathode Rays: a history of J.J. Thomson’s electron

    Google Scholar 

  19. Geiger H, Marsden E (1909) On a Diffuse Reflection of the \(\alpha \) particles. Proc R Soc Lond A 82. doi:10.1098/rspa.1909.0054

    Google Scholar 

  20. Messiah A (1999) Quantum mechanics. Dover Publications, New York

    Google Scholar 

  21. Chadwick J (1932) Possible existence of a Neutron. Nature 129:312. doi:10.1038/129312a0

    Google Scholar 

  22. Peskin ME, Schroeder DV (1995) An introduction to quantum field theory. (ISBN-9780201503975)

    Google Scholar 

  23. Bettini A (2008) Introduction to elementary particle physics. (ISBN-9781107406094)

    Google Scholar 

  24. Goldstein H (2005) Classical mechanics. Number ISBN-13:978-0201657029. Zanichelli Italia

    Google Scholar 

  25. Sakurai J, Napolitano J (2011) Modern quantum physics. (ISBN-9780805382914)

    Google Scholar 

  26. Bloom ED et al (1969) High-energy inelastic e p scattering at 6-degrees and 10-degrees. Phys Rev Lett 23:930–934. doi:10.1103/PhysRevLett. 23.930

  27. PBSNOVA/Fermilab/OfficeofScience/USDeptofEnergy (2012) http://en.wikipedia.org/wiki/Standard_Model. Standard Model image, modified after the Higgs discovery

  28. Strominger A (2009) Five problems in quantum gravity. Nucl Phys Proc Suppl 192–193:119–125. doi:10.1016/j.nuclphysbps.2009.07.049

    Google Scholar 

  29. Beringer J et al (2012a) Review of particle physics (RPP). Phys Rev D 86:010001. doi:10.1103/PhysRevD.86.010001

  30. Englert F, Brout R (1964) Broken symmetry and the mass of gauge vector mesons. Phys Rev Lett 13:321–323. doi:10.1103/PhysRevLett. 13.321

  31. Higgs PW (1964) Broken symmetries and the masses of gauge bosons. Phys Rev Lett 13:508–509. doi:10.1103/PhysRevLett. 13.508

  32. HorvÃąth D (2014) Twenty years of searching for the Higgs boson: exclusion at LEP, discovery at LHC. Mod Phys Lett A 29:1430004. doi:10.1142/S0217732314300043

    Google Scholar 

  33. Chatrchyan S et al (2013) Observation of a new boson with mass near 125 GeV in pp collisions at \(\sqrt{s}\) = 7 and 8 TeV. JHEP 1306:081. doi:10.1007/JHEP06(2013) 081

  34. Aad G et al (2012) Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys Lett B 716:1–29. doi:10.1016/j.physletb.2012.08.020

    Google Scholar 

  35. Ellis RK et al (1996) QCD and collider physics. Camb Monogr Part Phys Nucl Phys Cosmol 8:1–435

    ADS  Google Scholar 

  36. Brock I (2011) http://brock.physik.uni-bonn.de/~brock/feynman/ktp_ws1011/chapter14/qgluon_vertex.jpg. Collection of images of Feynman diagrams, drawn with MN\(\_\)fit software, developed by the University of Bonn

  37. Jung H (2011) QCD and Monte Carlo. Lecture write-up for QCD and Monte Carlo lectures

    Google Scholar 

  38. Altarelli G, Parisi G (1977) Asymptotic freedom in parton language. Nucl Phys B 126:298. doi:10.1016/0550-3213(77)90384-4

    Google Scholar 

  39. Gribov VN, Lipatov LN (1972) Deep inelastic ep scattering in perturbation theory. Sov J Nucl Phys 15:438–450

    Google Scholar 

  40. Moch S et al (2004) The three loop splitting functions in QCD: the nonsinglet case. Nucl Phys B 688:101–134. doi:10.1016/j.nuclphysb.2004.03.030

    Google Scholar 

  41. Kuraev EA et al (1976) Multi-Reggeon processes in the yang-mills theory. Sov Phys JETP 44:443–450

    Google Scholar 

  42. Kuraev EA et al (1977) The pomeranchuk singularity in nonabelian gauge theories. Sov Phys JETP 45:199–204

    Google Scholar 

  43. Catani S et al (1990) Qcd coherence in initial state radiation. Phys Lett B 234:339. doi:10.1016/0370-2693(90)91938-8

    Google Scholar 

  44. Ciafaloni M (1988) Coherence effects in initial jets at small \(q^2\)/s. Nucl Phys B 296:49. doi:10.1016/0550-3213(88)90380-X

    Google Scholar 

  45. Skands P (2010) Tuning monte carlo generators: the perugia tunes. Phys Rev D 82:074018. doi:10.1103/PhysRevD.82.074018

  46. Andersson B (1998) The Lund model. Cambridge monographs on particle physics, nuclear physics and cosmology, Cambridge University Press. ISBN 9780521420945

    Google Scholar 

  47. Osman S (2008) Multiple parton interactions in deep inelastic ep-scattering at HERA. doi:10.3204/DESY-THESIS-2008-048

  48. Webber BR (1984) A qcd model for jet fragmentation including soft gluon interference. Nucl Phys B 238:492. doi:10.1016/0550-3213(84)90333-X

    Google Scholar 

  49. Salam GP (2010) Towards jetography. Eur Phys J C67:637–686. doi:10.1140/epjc/s10052-010-1314-6

    Article  ADS  Google Scholar 

  50. Salam GP, Soyez G (2007) A practical seedless infrared-safe cone jet algorithm. JHEP 0705:086. doi:10.1088/1126-6708/2007/05/086

    Article  ADS  Google Scholar 

  51. Cacciari M et al (2008) The anti-\(k_t\) jet clustering algorithm. JHEP 04:063. doi:10.1088/1126-6708/2008/04/063

    Article  ADS  Google Scholar 

  52. Ellis SD, Soper DE (1993) Successive combination jet algorithm for hadron collisions. Phys Rev D 48:3160–3166. doi:10.1103/PhysRevD.48.3160

    Article  ADS  Google Scholar 

  53. Dokshitzer YL et al (1997) Better jet clustering algorithms. JHEP 9708:001. doi:10.1088/1126-6708/1997/08/001

    Google Scholar 

  54. Ellis SD et al (2010) Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches. Phys Rev D 81:094023. doi:10.1103/PhysRevD.81.094023

    Article  ADS  Google Scholar 

  55. CMS Collaboration (2010) Measurement of the inclusive jet and b-jet production in pp collisions at \(\sqrt{s}\)=7 TeV using particle flow. Internal note about b-jet inclusive cross section measurement

    Google Scholar 

  56. Quinn HR (2004) B physics and CP violation. (SLAC-PUB-10415): 47–84

    Google Scholar 

  57. Giunti C, Kim CW (2007) Fundamentals of neutrino physics and astrophysics. (ISBN-9780198508717)

    Google Scholar 

  58. Trimble V (1987) Existence and nature of dark matter in the universe. Ann Rev Astron Astrophys 25:425–472. doi:10.1146/annurev.aa.25.090187.002233

    Article  ADS  Google Scholar 

  59. Peebles PJE, Ratra B (2003) The cosmological constant and dark energy. Rev Mod Phys 75:559–606. doi:10.1103/RevModPhys. 75.559

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. ’t Hooft G (1980) Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Adv Study Inst Ser B Phys 59:135

    Google Scholar 

  61. Martin SP (1997) A supersymmetry primer. hep-ph/9709356

  62. Arkani-Hamed N et al (1998) The Hierarchy problem and new dimensions at a millimeter. Phys Lett B 429:263–272. doi:10.1016/S0370-2693(98)00466-3

    Article  ADS  MathSciNet  Google Scholar 

  63. Reeb D (2009) Quantum Gravity effects through running of Newton’s constant. hep-th/0901.2963

  64. Pomarol A (2012) Beyond the standard model. hep-th/1202.1391

  65. Susskind T (2011) Video lectures about string theory and M-theory. Stanford University Youtube Channel, March

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Gunnellini .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gunnellini, P. (2016). Introduction and Literature Review. In: Study of Double Parton Scattering Using Four-Jet Scenarios. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22213-4_1

Download citation

Publish with us

Policies and ethics