Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 287 Accesses

Abstract

This chapter presents synchrotron X-ray study of high resolution structure for the \(P_{\beta ^{{\prime}}}\) ripple phase of the phospholipid dimyristoylphosphatidylcholine (DMPC). Lipid bilayers consisting of DMPC were oriented onto a silicon wafer and hydrated through the vapor in a hydration chamber. First, brief history of the ripple phase is presented. The materials and methods section describes in detail the sample preparation and experimental setups for low and wide angle X-ray scattering (LAXS and WAXS, respectively) from oriented samples. Then, I derive mathematical corrections necessary for analysis of LAXS data. The determined electron density map has a sawtooth profile similar to the result from lower resolution data, but the features are sharper allowing better estimates for the modulated bilayer profile and the distribution of headgroups along the aqueous interface. Moreover, analysis of high resolution wide angle X-ray data shows that the hydrocarbon chains in the longer, major side of the asymmetric sawtooth are packed similarly to the L β F gel phase, with chains in both monolayers coupled and tilted by 18 C in the same direction. The absence of Bragg rods that could be associated with the minor side is consistent with disordered chains, as often suggested in the literature. I conclude with possible future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. A. Tardieu, V. Luzzati, F. Reman, Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J. Mol. Biol. 75(4), 711–733 (1973)

    Article  Google Scholar 

  2. R. Koynova, A. Koumanov, B. Tenchov, Metastable rippled gel phase in saturated phosphatidylcholines: calorimetric and densitometric characterization. Biochimica et Biophysica Acta (BBA) – Biomembranes 1285(1), 101–108 (1996)

    Google Scholar 

  3. J. Katsaras, S. Tristram-Nagle, Y. Liu, R. Headrick, E. Fontes, P. Mason, J.F. Nagle, Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples. Phys. Rev. E 61(5), 5668 (2000)

    Google Scholar 

  4. M.J. Janiak, D.M. Small, G.G. Shipley, Nature of the thermal pretransition of synthetic phospholipids: dimyristoyl- and dipalmitoyllecithin. Biochemistry 15(21), 4575–4580 (1976)

    Article  Google Scholar 

  5. M.J. Janiak, D.M. Small, G.G. Shipley, Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J. Biol. Chem. 254(13), 6068–6078 (1979)

    Google Scholar 

  6. D.C. Wack, W.W. Webb, Synchrotron X-ray study of the modulated lamellar phase \(P_{\beta ^{{\prime}}}\) in the lecithin-water system. Phys. Rev. A 40, 2712–2730 (1989)

    Article  ADS  Google Scholar 

  7. H. Yao, S. Matuoka, B. Tenchov, I. Hatta, Metastable ripple phase of fully hydrated dipalmitoylphosphatidylcholine as studied by small angle X-ray scattering. Biophys. J. 59(1), 252–255 (1991)

    Article  ADS  Google Scholar 

  8. W.J. Sun, S. Tristram-Nagle, R.M. Suter, J.F. Nagle, Structure of the ripple phase in lecithin bilayers. Proc. Natl. Acad. Sci. 93(14), 7008–7012 (1996)

    Article  ADS  Google Scholar 

  9. B.A. Cunningham, A.-D. Brown, D.H. Wolfe, W.P. Williams, A. Brain, Ripple phase formation in phosphatidylcholine: effect of acyl chain relative length, position, and unsaturation. Phys. Rev. E 58(3), 3662 (1998)

    Google Scholar 

  10. K. Sengupta, V. Raghunathan, J. Katsaras, Structure of the ripple phase in chiral and racemic dimyristoylphosphatidylcholine multibilayers. Phys. Rev. E 59(2), 2455 (1999)

    Google Scholar 

  11. K. Sengupta, V. Raghunathan, J. Katsaras, Novel structural features of the ripple phase of phospholipids. Europhys. Lett. 49(6), 722 (2000)

    Google Scholar 

  12. K. Sengupta, V.A. Raghunathan, J. Katsaras, Structure of the ripple phase of phospholipid multibilayers. Phys. Rev. E 68, 031710 (2003)

    Article  ADS  Google Scholar 

  13. K. Mortensen, W. Pfeiffer, E. Sackmann, W. Knoll, Structural properties of a phosphatidylcholine-cholesterol system as studied by small-angle neutron scattering: ripple structure and phase diagram. Biochimica et Biophysica Acta (BBA)-Biomembranes 945(2), 221–245 (1988)

    Google Scholar 

  14. J.P. Bradshaw, M.S. Edenborough, P.J. Sizer, A. Watts, Observation of rippled dioleoylphosphatidylcholine bilayers by neutron diffraction. Biochimica et Biophysica Acta (BBA)-Biomembranes 987(1), 111–114 (1989)

    Google Scholar 

  15. P.C. Mason, B.D. Gaulin, R.M. Epand, G.D. Wignall, J.S. Lin, Small angle neutron scattering and calorimetric studies of large unilamellar vesicles of the phospholipid dipalmitoylphosphatidylcholine. Phys. Rev. E 59(3), 3361 (1999)

    Google Scholar 

  16. J. Woodward IV, J. Zasadzinski, Amplitude, wave form, and temperature dependence of bilayer ripples in the \(P_{\beta ^{{\prime}}}\) phase. Phys. Rev. E 53(4), R3044 (1996)

    Google Scholar 

  17. B.R. Copeland, H.M. McConnell, The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosphatidylcholine and cholesterol. Biochimica et Biophysica Acta (BBA) – Biomembranes 599(1), 95–109 (1980)

    Google Scholar 

  18. D. Ruppel, E. Sackmann, On defects in different phases of two-dimensional lipid bilayers. Journal de Physique 44(9), 1025–1034 (1983)

    Article  Google Scholar 

  19. J. Zasadzinski, J. Schneir, J. Gurley, V. Elings, P. Hansma, Scanning tunneling microscopy of freeze-fracture replicas of biomembranes. Science 239(4843), 1013–1015 (1988)

    Article  ADS  Google Scholar 

  20. R.A. Parente, B.R. Lentz, Phase behavior of large unilamellar vesicles composed of synthetic phospholipids. Biochemistry 23(11), 2353–2362 (1984)

    Article  Google Scholar 

  21. L. Li, J.-X. Cheng, Coexisting stripe-and patch-shaped domains in giant unilamellar vesicles. Biochemistry 45(39), 11819–11826 (2006)

    Article  Google Scholar 

  22. J. Nagle, Theory of lipid monolayer and bilayer phase transitions: effect of headgroup interactions. J. Membr. Biol. 27(1), 233–250 (1976)

    Article  Google Scholar 

  23. T.J. McIntosh, Differences in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. A molecular packing model. Biophys. J. 29(2), 237–245 (1980)

    MathSciNet  Google Scholar 

  24. J.F. Nagle, S. Tristram-Nagle, Structure of lipid bilayers. Biochimica et Biophysica Acta (BBA) – Reviews on Biomembranes 1469(3), 159–195 (2000)

    Google Scholar 

  25. M.P. Hentschel, F. Rustichelli, Structure of the ripple phase \(P_{\beta ^{{\prime}}}\) in hydrated phosphatidylcholine multimembranes. Phys. Rev. Lett. 66, 903–906 (1991)

    Article  ADS  Google Scholar 

  26. R. Wittebort, C. Schmidt, R. Griffin, Solid-state carbon-13 nuclear magnetic resonance of the lecithin gel to liquid-crystalline phase transition. Biochemistry 20(14), 4223–4228 (1981)

    Article  Google Scholar 

  27. M.B. Schneider, W.K. Chan, W.W. Webb, Fast diffusion along defects and corrugations in phospholipid \(P_{\beta ^{{\prime}}}\), liquid crystals. Biophys. J. 43(2), 157–165 (1983)

    Article  Google Scholar 

  28. A.H. de Vries, S. Yefimov, A.E. Mark, S.J. Marrink, Molecular structure of the lecithin ripple phase. Proc. Natl. Acad. Sci. 102(15), 5392–5396 (2005)

    Article  ADS  Google Scholar 

  29. O. Lenz, F. Schmid, Structure of symmetric and asymmetric “ripple” phases in lipid bilayers. Phys. Rev. Lett. 98, 058104 (2007)

    Article  ADS  Google Scholar 

  30. C.M. Chen, T.C. Lubensky, F.C. MacKintosh, Phase transitions and modulated phases in lipid bilayers. Phys. Rev. E 51(1), 504 (1995)

    Google Scholar 

  31. J. Katsaras, V.A. Raghunathan, Molecular chirality and the “ripple” phase of phosphatidylcholine multibilayers. Phys. Rev. Lett. 74, 2022–2025 (1995)

    Article  ADS  Google Scholar 

  32. M.A. Kamal, A. Pal, V.A. Raghunathan, M. Rao, Theory of the asymmetric ripple phase in achiral lipid membranes. Europhys. Lett. 95(4), 48004 (2011)

    Google Scholar 

  33. K.A. Riske, R.P. Barroso, C.C. Vequi-Suplicy, R. Germano, V.B. Henriques, M.T. Lamy, Lipid bilayer pre-transition as the beginning of the melting process. Biochimica et Biophysica Acta (BBA) – Biomembranes 1788(5), 954–963 (2009)

    Google Scholar 

  34. S.A. Tristram-Nagle, Preparation of oriented, fully hydrated lipid samples for structure determination using X-ray scattering. Methods Mol. Biol. 400, 63–75 (2007)

    Article  Google Scholar 

  35. http://henke.lbl.gov/optical_constants

  36. Y. Liu, New method to obtain strcuture of biomembranes using diffuse X-ray scattering: application to fluid phase DOPC lipid bilayers. PhD thesis, Carnegie Mellon University (2003)

    Google Scholar 

  37. B.E. Warren, X-ray Diffraction (Courier Dover Publications, New York, 1969)

    Google Scholar 

  38. S. Guler, D.D. Ghosh, J. Pan, J.C. Mathai, M.L. Zeidel, J.F. Nagle, S. Tristram-Nagle, Effects of ether vs. ester linkage on lipid bilayer structure and water permeability. Chem. Phys. Lipids 160(1), 33–44 (2009)

    Google Scholar 

  39. http://cars9.uchicago.edu/software/python/lmfit/

  40. M.C. Wiener, R.M. Suter, J.F. Nagle, Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. Biophys. J. 55(2), 315–325 (1989)

    Article  ADS  Google Scholar 

  41. C. Worthington, G. King, T. McIntosh, Direct structure determination of multilayered membrane-type systems which contain fluid layers. Biophys. J. 13(5), 480–494 (1973)

    Article  Google Scholar 

  42. S. Tristram-Nagle, Y. Liu, J. Legleiter, J.F. Nagle, Structure of gel phase DMPC determined by X-ray diffraction. Biophys. J. 83(6), 3324–3335 (2002)

    Article  ADS  Google Scholar 

  43. G. Pabst, H. Amenitsch, D.P. Kharakoz, P. Laggner, M. Rappolt, Structure and fluctuations of phosphatidylcholines in the vicinity of the main phase transition. Phys. Rev. E 70(2), 021908 (2004)

    Google Scholar 

  44. T.T. Mills, G.E. Toombes, S. Tristram-Nagle, D.-M. Smilgies, G.W. Feigenson, J.F. Nagle, Order parameters and areas in fluid-phase oriented lipid membranes using wide angle X-ray scattering. Biophys. J. 95(2), 669–681 (2008)

    Article  Google Scholar 

  45. G.S. Smith, E.B. Sirota, C.R. Safinya, N.A. Clark, Structure of the \(L_{\beta ^{{\prime}}}\) phases in a hydrated phosphatidylcholine multimembrane. Phys. Rev. Lett. 60, 813–816 (1988)

    Article  ADS  Google Scholar 

  46. G.H. Vineyard, Grazing-incidence diffraction and the distorted-wave approximation for the study of surfaces. Phys. Rev. B 26(8), 4146 (1982)

    Google Scholar 

  47. C.E. Miller, J. Majewski, E.B. Watkins, D.J. Mulder, T. Gog, T.L. Kuhl, Probing the local order of single phospholipid membranes using grazing incidence X-ray diffraction. Phys. Rev. Lett. 100(5), 058103 (2008)

    Google Scholar 

  48. K. Akabori, J.F. Nagle, Comparing lipid membranes in different environments. ACS Nano 8(4), 3123–3127 (2014)

    Article  Google Scholar 

  49. S. Tristram-Nagle, R. Zhang, R.M. Suter, C.R. Worthington, W.J. Sun, J.F. Nagle, Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. Biophys. J. 64(4), 1097–1109 (1993)

    Article  Google Scholar 

  50. W.J. Sun, R.M. Suter, M.A. Knewtson, C.R. Worthington, S. Tristram-Nagle, R. Zhang, J.F. Nagle, Order and disorder in fully hydrated unoriented bilayers of gel-phase dipalmitoylphosphatidylcholine. Phys. Rev. E 49, 4665–4676 (1994)

    Article  ADS  Google Scholar 

  51. N. Chu, N. Kučerka, Y. Liu, S. Tristram-Nagle, J.F. Nagle, Anomalous swelling of lipid bilayer stacks is caused by softening of the bending modulus. Phys. Rev. E 71, 041904 (2005)

    Article  ADS  Google Scholar 

  52. H. Träuble, D.H. Haynes, The volume change in lipid bilayer lamellae at the crystalline-liquid crystalline phase transition. Chem. Phys. Lipids 7(4), 324–335 (1971)

    Article  Google Scholar 

  53. J.F. Nagle, Theory of the main lipid bilayer phase-transition. Annu. Rev. Phys. Chem. 31, 157–195 (1980)

    Article  ADS  Google Scholar 

  54. E.B. Watkins, C.E. Miller, W.-P. Liao, T.L. Kuhl, Equilibrium or quenched: fundamental differences between lipid monolayers, supported bilayers, and membranes. ACS Nano 8(4), 3181–3191 (2014)

    Article  Google Scholar 

  55. N. Kučerka, Y. Liu, N. Chu, H.I. Petrache, S. Tristram-Nagle, J.F. Nagle, Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys. J. 88(4), 2626–2637 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akabori, K. (2015). Ripple Phase. In: Structure Determination of HIV-1 Tat/Fluid Phase Membranes and DMPC Ripple Phase Using X-Ray Scattering. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22210-3_3

Download citation

Publish with us

Policies and ethics