Data Analysis

  • Darshana Chandrakant Patel
Part of the Springer Theses book series (Springer Theses)


The elastic angular distributions along with the first few discrete level angular distributions were utilized in modeling the nuclear potential. Details of the optical potential models used in each of the three experiments are presented in this chapter. This chapter concludes with the global analysis of the employed optical models and the description of the multipole analysis (MDA) technique adopted for the analysis of the giant resonance data.


Angular Distribution Optical Model Optical Potential Optical Model Potential Angular Momentum Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 2.
    X. Chen, Giant resonance study by 6Li scattering. Ph.D. thesis, Texas A & M University, 2008Google Scholar
  2. 24.
    T. Li, U. Garg, Y. Liu, R. Marks, B.K. Nayak, P.V. Madhusudhana Rao, M. Fujiwara, H. Hashimoto, K. Nakanishi, S. Okumura, M. Yosoi, M. Ichikawa, M. Itoh, R. Matsuo, T. Terazono, M. Uchida, Y. Iwao, T. Kawabata, T. Murakami, H. Sakaguchi, S. Terashima, Y. Yasuda, J. Zenihiro, H. Akimune, K. Kawase, M.N. Harakeh, Isoscalar giant resonances in the Sn nuclei and implications for the asymmetry term in the nuclear-matter incompressibility. Phys. Rev. C 81(3), 034309 (2010). ISSN 0556-2813. doi: 10.1103/PhysRevC.81.034309
  3. 27.
    H. Morsch, C. Sükösd, M. Rogge, P. Turek, H. Machner, C. Mayer-Böricke, Giant monopole and quadrupole resonances and other multipole excitations in 208Pb studied in 43 MeV/nucleon α-particle and deuteron scattering. Phys. Rev. C 22(2), 489–500 (1980). ISSN 0556-2813. doi: 10.1103/PhysRevC.22.489 Google Scholar
  4. 47.
    G. Satchler, Direct Nuclear Reaction (Oxford University Press, Oxford, 1983)Google Scholar
  5. 50.
    M. Uchida, Thesis: isoscalar giant dipole resonance ad nuclear incompressibility, June 2003Google Scholar
  6. 57.
    B. Berman, S. Fultz, Measurements of the giant dipole resonance with monoenergetic photons. Rev. Mod. Phys. 47(3), 713–761 (1975). ISSN 0034-6861. doi: 10.1103/RevModPhys.47.713 Google Scholar
  7. 71.
    G.R. Satchler, Introduction to Nuclear Reactions, 1st edn. (Wiley, 1980). ISBN 0-470-26467-5Google Scholar
  8. 72.
    P.E. Hodgson, The Optical Model of Elastic Scattering (Oxford Uniersity Press, Oxford, 1963)zbMATHGoogle Scholar
  9. 73.
    I. Ulehla, L. Gomolcak, Z. Pluhar, Optical Model of the Atomic Nucleus (Academic, New York, 1964)Google Scholar
  10. 74.
    G. Satchler, D. Khoa, Missing monopole strength in 58Ni and uncertainties in the analysis of α-particle scattering. Phys. Rev. C 55(1), 285–297 (1997). ISSN 0556-2813. doi: 10.1103/PhysRevC.55.285 Google Scholar
  11. 75.
    M. Itoh, H. Sakaguchi, M. Uchida, T. Ishikawa, T. Kawabata, T. Murakami, H. Takeda, T. Taki, S. Terashima, N. Tsukahara, Y. Yasuda, M. Yosoi, U. Garg, M. Hedden, B. Kharraja, M. Koss, B. Nayak, S. Zhu, H. Fujimura, M. Fujiwara, K. Hara, H. Yoshida, H. Akimune, M. Harakeh, M. Volkerts, Systematic study of L = 3 giant resonances in Sm isotopes via multipole decomposition analysis. Phys. Rev. C 68(6), 064602 (2003). ISSN 0556-2813. doi: 10.1103/PhysRevC.68.064602
  12. 76.
    G. Fricke, C. Bernhardt, K. Heilig, L. Schaller, L. Schellenberg, E. Shera, C. Dejager, Nuclear ground state charge radii from electromagnetic interactions. At. Data Nucl. Data Tables 60(2), 177–285 (1995). ISSN 0092640X. doi: 10.1006/adnd.1995.1007 Google Scholar
  13. 78.
    M. Rhoades-Brown, M. Macfarlane, S. Pieper, Techniques for heavy-ion coupled-channels calculations. I. Long-range Coulomb coupling. Phys. Rev. C 21(6), 2417–2426 (1980). ISSN 0556-2813. doi: 10.1103/PhysRevC.21.2417 Google Scholar
  14. 79.
    Http://, 2014. ‘nndc.’
  15. 80.
    T. Kibédi, R. Spear, Reduced electric-octupole transition probabilities, B(E3;01+ → 31−) – an update. At. Data Nucl. Data Tables 80(1), 35–82 (2002). ISSN 0092640X. doi: 10.1006/adnd.2001.0871 Google Scholar
  16. 81.
    W. Daehnick, J. Childs, Z. Vrcelj, Global optical model potential for elastic deuteron scattering from 12 to 90 MeV. Phys. Rev. C 21(6), 2253–2274 (1980). ISSN 0556-2813. doi: 10.1103/PhysRevC.21.2253 Google Scholar
  17. 82.
    A. Korff, P. Haefner, C. Bäumer, A. van den Berg, N. Blasi, B. Davids, D. De Frenne, R. de Leo, D. Frekers, E.-W. Grewe, M. Harakeh, F. Hofmann, M. Hunyadi, E. Jacobs, B. Junk, A. Negret, P. von Neumann-Cosel, L. Popescu, S. Rakers, A. Richter, H. Wörtche, Deuteron elastic and inelastic scattering at intermediate energies from nuclei in the mass range 6¡A¡116. Phys. Rev. C 70(6), 067601 (2004). ISSN 0556-2813. doi: 10.1103/PhysRevC.70.067601
  18. 84.
    Y. Han, Y. Shi, Q. Shen, Deuteron global optical model potential for energies up to 200 MeV. Phys. Rev. C 74(4), 044615 (2006). ISSN 0556-2813. doi: 10.1103/PhysRevC.74.044615
  19. 85.
    D.T. Khoa, G. Satchler, Generalized folding model for elastic and inelastic nucleus–nucleus scattering using realistic density dependent nucleon–nucleon interaction. Nucl. Phys. A 668(1–4), 3–41 (2000). ISSN 03759474. doi: 10.1016/S0375-9474(99)00680-6 Google Scholar
  20. 86.
    J. Raynal, Proceedings of the Workshop on Applied Nuclear Theory and Nuclear Model Calculations for Nuclear Technology Application, Trieste (1988)Google Scholar
  21. 87.
    A.J. Koning, J. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713(3–4), 231–310 (2003). ISSN 03759474. doi: 10.1016/S0375-9474(02)01321-0 Google Scholar
  22. 88.
    M. Matoba, M. Hyakutake, I. Kumabe, Volume integrals of optical potentials for light composite projectiles. Phys. Rev. C 32(5), 1773–1775 (1985). ISSN 0556-2813. doi: 10.1103/PhysRevC.32.1773 Google Scholar
  23. 89.
    L. Arnold, B. Clark, E. Cooper, H. Sherif, D. Hutcheon, P. Kitching, J. Cameron, R. Liljestrand, R. MacDonald, W. McDonald, C. Miller, G. Neilson, W. Olsen, D. Sheppard, G. Stinson, D. McDaniels, J. Tinsley, R. Mercer, L. Swensen, P. Schwandt, C. Stronach, Energy dependence of the p-40Ca optical potential: a Dirac equation perspective. Phys. Rev. C 25(2), 936–940 (1982). ISSN 0556-2813. doi: 10.1103/PhysRevC.25.936 Google Scholar
  24. 90.
    D. Youngblood, Y.-W. Lui, H. Clark, Giant resonances in 24Mg. Phys. Rev. C 60(1), 014304 (1999). ISSN 0556-2813. doi: 10.1103/PhysRevC.60.014304
  25. 95.
    N. Van Sen, J. Arvieux, Y.E. Yanlin, G. Gaillard, Elastic scattering of polarized deuterons from 40Ca and 58Ni at intermediate energies. Phys. Lett. B 156(June), 185–188 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Darshana Chandrakant Patel
    • 1
  1. 1.University of Notre DameNotre DameUSA

Personalised recommendations