Advertisement

Theory of Collective Motion

  • Darshana Chandrakant Patel
Chapter
  • 244 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

GRs are collective phenomenon. They can be viewed as a coherent superposition of one-particle one-hole (1p-1h) interactions. The nucleon in the target nucleus can be excited into bound or quasi-bound states which gives rise to the 1p-1h state of the target nucleus. The excitation strength tends to be concentrated, by constructive superposition of 1p-1h excitations, into one or few of the levels in each shell. Thus, mathematically if the observed resonance exhausts a large fraction of the corresponding transition strength (sum rule) it is identified as a giant resonance. This chapter covers various theoretical concepts underlying the physics of GRs and describes the framework used for the analysis of the experimental data.

Keywords

Optical Potential Transition Density Giant Resonance Distorted Wave Born Approximation Optical Model Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 14.
    A. Bohr, B. Mottelson, Nuclear Structure, vol. II (Benjamin, New York, 1975)zbMATHGoogle Scholar
  2. 16.
    M.N. Harakeh, A. van der Woude, Giant Resonances Fundamental High-Frequency Modes of Nuclear Ecistations (Oxford University Press, New York, 2001)Google Scholar
  3. 47.
    G. Satchler, Direct Nuclear Reaction (Oxford University Press, Oxford, 1983)Google Scholar
  4. 48.
    M. Harakeh, A. Dieperink, Isoscalar dipole resonance: form factor and energy weighted sum rule. Phys. Rev. C 23(5), 2329–2334 (1981). ISSN 0556-2813. doi: 10.1103/PhysRevC.23.2329 Google Scholar
  5. 49.
    G. Satchler, Isospin and macroscopic models for the excitation of giant resonances and other collective states. Nucl. Phys. A 472(2), 215–236 (1987). ISSN 03759474. doi: 10.1016/0375-9474(87)90208-9 Google Scholar
  6. 50.
    M. Uchida, Thesis: isoscalar giant dipole resonance ad nuclear incompressibility, June 2003Google Scholar
  7. 51.
    T. Deal, S. Fallieros, Models and sum rules for nuclear transition densities. Phys. Rev. C 7(4), 1709–1710 (1973). ISSN 0556-2813. doi: 10.1103/PhysRevC.7.1709 Google Scholar
  8. 52.
    Y.-W. Lui, D. Youngblood, H. Clark, Y. Tokimoto, B. John, Isoscalar giant resonances for nuclei with mass between 56 and 60. Phys. Rev. C 73(1), 014314 (2006). ISSN 0556-2813. doi: 10.1103/PhysRevC.73.014314
  9. 53.
    M. Uchida, H. Sakaguchi, M. Itoh, M. Yosoi, T. Kawabata, Y. Yasuda, H. Takeda, T. Murakami, S. Terashima, S. Kishi, U. Garg, P. Boutachkov, M. Hedden, B. Kharraja, M. Koss, B. Nayak, S. Zhu, M. Fujiwara, H. Fujimura, H. Yoshida, K. Hara, H. Akimune, M. Harakeh, Systematics of the bimodal isoscalar giant dipole resonance. Phys. Rev. C 69(5), 051301 (2004). ISSN 0556-2813. doi: 10.1103/PhysRevC.69.051301
  10. 54.
    G.R. Satchler, Particle. Part. Nucl. 5, 105 (1972)Google Scholar
  11. 55.
    A.M. Bernstein, Advances in Nuclear Physics (Plenum Press, New York, 1969)Google Scholar
  12. 56.
    S.S. Dietrich, B.L. Berman, Atlas of photoneutron cross sections obtained with monoenergetic photons. At. Data Nucl. Data Tables 38(2), 199–338 (1988). ISSN 0092640X. doi: 10.1016/0092-640X(88)90033-2 Google Scholar
  13. 57.
    B. Berman, S. Fultz, Measurements of the giant dipole resonance with monoenergetic photons. Rev. Mod. Phys. 47(3), 713–761 (1975). ISSN 0034-6861. doi: 10.1103/RevModPhys.47.713 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Darshana Chandrakant Patel
    • 1
  1. 1.University of Notre DameNotre DameUSA

Personalised recommendations