Advertisement

Introduction

  • Darshana Chandrakant Patel
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Our understanding of the ground state and excited state properties of the atomic nuclei remains unsatisfactory even decades after establishing the existence of the nuclear force. A lot of theoretical effort has been made over the past many years to explain the experimental observations and, at the same time, consistent effort has been put forward to push the experimental frontiers. Nuclear matter is a theoretical construct of an infinite number of nucleons with a fixed neutron to proton ratio. Nuclear matter is a powerful tool from the point of view of improving our understanding of the nuclear many-body problem. The nuclear matter equation of state (EOS) is essentially a constitutive equation which provides a mathematical relationship between two or more state functions associated with a given system, such as its temperature, pressure, internal energy, density or particle number. The nuclear matter EOS is important for understanding many interesting phenomena such as the collective behavior of nucleons in nuclei, the massive stellar collapse leading to a supernova explosion, the radii of neutron stars, and nuclear properties such as the neutron-skin thickness of heavy nuclei. It thus becomes important to know the EOS for nuclear matter accurately. In order to probe the density dependence of the EOS one must study the response of the nucleus to external perturbations. The isoscalar giant monopole resonance is one such compression mode of oscillation where protons and neutrons oscillate in phase with each other around the equilibrium density. Thus the ISGMR measures the response of the nucleus to density fluctuations. The ISGMR centroid energy is directly related to the incompressibility of finite nuclei which in turn constrains the incompressibility, an important property of the EOS, of the infinite nuclear matter.

Keywords

Neutron Star Nuclear Matter Symmetry Energy Giant Resonance Symmetric Nuclear Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 1.
    J. Speth, Electric and Magnetic Giant Resonance in Nuclei, vol. 7 (World Scientific, Singapore/River Edge, 1991)Google Scholar
  2. 2.
    X. Chen, Giant resonance study by 6Li scattering. Ph.D. thesis, Texas A & M University, 2008Google Scholar
  3. 3.
    E. Khan, The Giant monopole resonance in Pb isotopes. (2009), http://arxiv.org/pdf/0907.3423.pdf
  4. 4.
    L.-G. Cao, H. Sagawa, G. Colò, Microscopic study of the isoscalar giant monopole resonance in Cd, Sn, and Pb isotopes. Phys. Rev. C 86(5), 054313 (2012). ISSN 0556-2813. doi: 10.1103/PhysRevC.86.054313
  5. 7.
    G. Colò, U. Garg, H. Sagawa, Symmetry energy from the nuclear collective motion: constraints from dipole, quadrupole, monopole and spin-dipole resonances. Eur. Phys. J. A 50(2), 26 (2014). ISSN 1434-6001. doi: 10.1140/epja/i2014-14026-9
  6. 8.
    G. Colò, The compression modes in atomic nuclei and their relevance for the nuclear equation of state. Phys. Part. Nucl. 39(2), 286–305 (2011). ISSN 1063-7796. doi: 10.1134/S1063779608020056
  7. 9.
    J. Piekarewicz, Unmasking the nuclear matter equation of state. Phys. Rev. C 69(4), 041301 (2004). ISSN 0556-2813. doi: 10.1103/PhysRevC.69.041301
  8. 10.
    J.M. Lattimer, M. Prakash, Neutron star structure and the equation of state. Astrophys. J. 550(1), 426–442 (2001). ISSN 0004-637X. doi: 10.1086/319702
  9. 11.
    C.J. Horowitz, Neutron star structure and the neutron radius of 208Pb. Phys. Rev. Lett. 86(25), 5647–5650 (2001). ISSN 0031-9007. doi: 10.1103/PhysRevLett.86.5647
  10. 12.
    J. Piekarewicz, M. Centelles, Incompressibility of neutron-rich matter. Phys. Rev. C 79(5), 054311 (2009). ISSN 0556-2813. doi: 10.1103/PhysRevC.79.054311
  11. 13.
    J. Piekarewicz, Symmetry energy constraints from giant resonances: a relativistic mean-field theory overview. Eur. Phys. J. A 50(2), 25 (2014). ISSN 1434-6001. doi: 10.1140/epja/i2014-14025-x
  12. 14.
    A. Bohr, B. Mottelson, Nuclear Structure, vol. II (Benjamin, New York, 1975)Google Scholar
  13. 15.
    N. Glendenning, Equation of state from nuclear and astrophysical evidence. Phys. Rev. C 37(6), 2733–2743 (1988). ISSN 0556-2813. doi: 10.1103/PhysRevC.37.2733
  14. 16.
    M.N. Harakeh, A. van der Woude, Giant Resonances Fundamental High-Frequency Modes of Nuclear Ecistations (Oxford University Press, New York, 2001)Google Scholar
  15. 17.
    G. Satchler, New giant resonances in nuclei. Phys. Rep. 14(3), 97–127 (1974). ISSN 03701573. doi: 10.1016/0370-1573(74)90039-8
  16. 18.
    S. Stringari, Sum rules for compression modes. Phys. Lett. B 108(4–5), 232–236 (1982). ISSN 03702693. doi: 10.1016/0370-2693(82)91182-0
  17. 19.
    J. Treiner, H. Krivine, O. Bohigas, J. Martorell, Nuclear incompressibility: from finite nuclei to nuclear matter. Nucl. Phys. A 371(2), 253–287 (1981). ISSN 03759474. doi: 10.1016/0375-9474(81)90067-1
  18. 20.
    J. Blaizot, J. Berger, J. Dechargé, M. Girod, Microscopic and macroscopic determinations of nuclear compressibility. Nucl. Phys. A 591(3), 435–457 (1995). ISSN 03759474. doi: 10.1016/0375-9474(95)00294-B
  19. 21.
    J. Blaizot, Nuclear compressibilities. Phys. Rep. 64(4), 171–248 (1980). ISSN 03701573. doi: 10.1016/0370-1573(80)90001-0
  20. 22.
    J. Pearson, The incompressibility of nuclear matter and the breathing mode. Phys. Lett. B 271(1–2), 12–16 (1991). ISSN 03702693. doi: 10.1016/0370-2693(91)91269-2
  21. 23.
    S. Shlomo, D. Youngblood, Nuclear matter compressibility from isoscalar giant monopole resonance. Phys. Rev. C 47(2), 529–536 (1993). ISSN 0556-2813. doi: 10.1103/PhysRevC.47.529
  22. 24.
    T. Li, U. Garg, Y. Liu, R. Marks, B.K. Nayak, P.V. Madhusudhana Rao, M. Fujiwara, H. Hashimoto, K. Nakanishi, S. Okumura, M. Yosoi, M. Ichikawa, M. Itoh, R. Matsuo, T. Terazono, M. Uchida, Y. Iwao, T. Kawabata, T. Murakami, H. Sakaguchi, S. Terashima, Y. Yasuda, J. Zenihiro, H. Akimune, K. Kawase, M.N. Harakeh, Isoscalar giant resonances in the Sn nuclei and implications for the asymmetry term in the nuclear-matter incompressibility. Phys. Rev. C 81(3), 034309 (2010). ISSN 0556-2813. doi: 10.1103/PhysRevC.81.034309
  23. 25.
    J. Piekarewicz, Correlating the giant-monopole resonance to the nuclear-matter incompressibility. Phys. Rev. C 66(3), 034305 (2002). ISSN 0556-2813. doi: 10.1103/PhysRevC.66.034305
  24. 26.
    J. Piekarewicz, Why is the equation of state for tin so soft? Phys. Rev. C 76(3), 031301 (2007). ISSN 0556-2813. doi: 10.1103/PhysRevC.76.031301
  25. 27.
    H. Morsch, C. Sükösd, M. Rogge, P. Turek, H. Machner, C. Mayer-Böricke, Giant monopole and quadrupole resonances and other multipole excitations in 208Pb studied in 43 MeV/nucleon α-particle and deuteron scattering. Phys. Rev. C 22(2), 489–500 (1980). ISSN 0556-2813. doi: 10.1103/PhysRevC.22.489
  26. 28.
    A.M. Austin, The Two-Body Force in Nuclei (Plenum, New York, 1972)Google Scholar
  27. 29.
    T. Li, U. Garg, Y. Liu, R. Marks, B.K. Nayak, P.V.M. Rao, M. Fujiwara, H. Hashimoto, K. Kawase, K. Nakanishi, S. Okumura, M. Yosoi, M. Itoh, M. Ichikawa, R. Matsuo, T. Terazono, M. Uchida, T. Kawabata, H. Akimune, Y. Iwao, T. Murakami, H. Sakaguchi, S. Terashima, Y. Yasuda, J. Zenihiro, M.N. Harakeh, Isotopic dependence of the giant monopole resonance in the even-A 112−124Sn isotopes and the asymmetry term in nuclear incompressibility. Phys. Rev. Lett. 99(16), 162503 (2007). ISSN 0031-9007. doi: 10.1103/PhysRevLett.99.162503
  28. 30.
    O. Civitarese, A. Dumrauf, M. Reboiro, P. Ring, M. Sharma, Effect of pairing on breathing mode and nuclear matter compressibility. Phys. Rev. C 43(6), 2622–2630 (1991). ISSN 0556-2813. doi: 10.1103/PhysRevC.43.2622
  29. 31.
    J. Li, G. Colò, J. Meng, Microscopic linear response calculations based on the Skyrme functional plus the pairing contribution. Phys. Rev. C 78(6), 064304 (2008). ISSN 0556-2813. doi: 10.1103/PhysRevC.78.064304
  30. 32.
    E. Khan, Role of superfluidity in nuclear incompressibilities. Phys. Rev. C 80(1), 011307 (2009). ISSN 0556-2813. doi: 10.1103/PhysRevC.80.011307
  31. 34.
    P. Veselý, J. Toivanen, B.G. Carlsson, J. Dobaczewski, N. Michel, A. Pastore, Giant monopole resonances and nuclear incompressibilities studied for the zero-range and separable pairing interactions. Phys. Rev. C 86(2), 024303 (2012). ISSN 0556-2813. doi: 10.1103/PhysRevC.86.024303
  32. 35.
    J. Piekarewicz, Do we understand the incompressibility of neutron-rich matter? J. Phys. G: Nucl. Part. Phys. 37(6), 064038 (2010). ISSN 0954-3899. doi: 10.1088/0954-3899/37/6/064038
  33. 36.
    E. Khan, Giant monopole resonance in Pb isotopes. Phys. Rev. C 80(5), 057302 (2009). ISSN 0556-2813. doi: 10.1103/PhysRevC.80.057302
  34. 37.
    H. Sagawa, I. Hamamoto, X.Z. Zhang, Giant monopole states in nuclei near drip lines. J. Phys. G: Nucl. Part. Phys. 24(8), 1445–1454 (1998). ISSN 0954-3899. doi: 10.1088/0954-3899/24/8/019
  35. 39.
    E. Khan, N. Paar, D. Vretenar, L.-G. Cao, H. Sagawa, G. Colò, Incompressibility of finite fermionic systems: stable and exotic atomic nuclei. Phys. Rev. C 87(6), 064311 (2013). ISSN 0556-2813. doi: 10.1103/PhysRevC.87.064311
  36. 40.
    D. Savran, T. Aumann, A. Zilges, Experimental studies of the Pygmy dipole resonance. Prog. Part. Nucl. Phys. 70, 210–245 (2013). ISSN 01466410. doi: 10.1016/j.ppnp.2013.02.003
  37. 41.
    C. Demonchy, W. Mittig, H. Savajols, P. Roussel-Chomaz, M. Chartier, B. Jurado, L. Giot, D. Cortina-Gil, M. Caamaño, G. Ter-Arkopian, A. Fomichev, A. Rodin, M. Golovkov, S. Stepantsov, A. Gillibert, E. Pollacco, A. Obertelli, H. Wang, MAYA, a gaseous active target. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 573(1–2), 145–148 (2007). ISSN 01689002. doi: 10.1016/j.nima.2006.11.025
  38. 42.
    A. Vorobyov, G. Korolev, A. Dobrovolsky, A. Khanzadeev, G. Petrov, E. Spiridenkov, Y. Terrien, J. Lugol, J. Saudinos, B. Silverman, F. Wellers, Experimental apparatus for the study of small angle neutron-proton elastic scattering at intermediate energies. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 270(2–3), 419–430 (1988). ISSN 01689002. doi: 10.1016/0168-9002(88)90710-3
  39. 43.
    C. Monrozeau, E. Khan, Y. Blumenfeld, W. Mittig, D. Beaumel, M. Caamaño, D. Cortina-Gil, C. Demonchy, N. Frascaria, U. Garg, M. Gelin, A. Gillibert, D. Gupta, F. Maréchal, A. Obertelli, P. Roussel-Chomaz, J.-A. Scarpaci, Measurement of the GMR in the unstable 56Ni nucleus using the active target maya. Nucl. Phys. A 788(1–4), 182–187 (2007). ISSN 03759474. doi: 10.1016/j.nuclphysa.2007.01.080
  40. 44.
    C. Monrozeau, E. Khan, Y. Blumenfeld, C. Demonchy, W. Mittig, P. Roussel-Chomaz, D. Beaumel, M. Caamaño, D. Cortina-Gil, J. Ebran, N. Frascaria, U. Garg, M. Gelin, A. Gillibert, D. Gupta, N. Keeley, F. Maréchal, A. Obertelli, J.-A. Scarpaci, First measurement of the Giant monopole and quadrupole resonances in a short-lived nucleus:56Ni. Phys. Rev. Lett. 100(4), 042501 (2008). ISSN 0031-9007. doi: 10.1103/PhysRevLett.100.042501
  41. 45.
  42. 46.
    A. Willis, M. Morlet, N. Marty, R. Frascaria, C. Djalali, V. Comparat, P. Kitching, Excitation of the giant monopole resonance in 208Pb,120Sn,90Zr,58Ni and 40Ca by the scattering of 108 MeV deliterons. Nucl. Phys. A 344(1), 137–150 (1980). ISSN 03759474. doi: 10.1016/0375-9474(80)90435-2

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Darshana Chandrakant Patel
    • 1
  1. 1.University of Notre DameNotre DameUSA

Personalised recommendations