Exploring New Production Methods of Hydrogen/Natural Gas Blends

  • Kas Hemmes
Part of the Green Energy and Technology book series (GREEN)


In this chapter, we present concepts for hydrogen production technologies that create mixtures of hydrogen with natural gas, for either the gas grid or the standalone fuel; enriched methane. In the production of hydrogen from the natural gas itself, full conversion of methane into hydrogen is no longer necessary, as it is in conventional hydrogen production technologies, because the hydrogen is to be mixed with natural gas. In this study explored the production of hydrogen/natural gas blends through steam reforming of natural gas and through thermal and plasma decomposition of methane. The production methods considered are assessed on a conceptual design level. An interesting option is the production of hydrogen/natural gas blends by an internal reforming fuel cell, whereby effective heat integration is applied and at the same time electricity is produced at high total efficiency. We also investigate potentially simplified conversion routes from biomass compared to current conversion routes that aim at the production of pure hydrogen. Two examples, supercritical gasification and a bio-technological route, illustrate the production of hydrogen/natural gas blends from biomass.


Thermal and plasma decomposition of methane Distribution grids Enriched methane production processes Production from biomass 

List of Symbols

ΔG (J/mol)

Change in Gibbs free energy

ΔH (J/mol)

Change in enthalpy




Fuel cell efficiency

ΔS (J/mol K)

Change in entropy

T (K)


V (Volt)


i (A/m2)

Current density

r (Ω m2)

Specific internal resistance


Fuel utilization

α (Volt)

Slope of local Nernst potential as a function of u f

List of Acronyms


Combined heat and power


Concentrated solar power


Direct carbon fuel cell


Higher heating value


Enriched methane


Internal combustion engine


Internal reforming


Molten carbonate fuel cell


Natural gas


Steam methane reforming


Solid oxide fuel cell



This chapter is based on the research performed in the framework of the Dutch national project “The Greening of Gas” Project number EETK01011. The author acknowledges the contribution of his co-authors in this early article [1]. The work has partly been financed by a grant of the Energy Delta Gas Research (EDGaR) program. EDGaR is co-financed by the Northern Netherlands Provinces, the European Fund for Regional Development, the Ministry of Economic Affairs, Agriculture and Innovation and the Province of Groningen.


  1. 1.
    van de Beld L, Bouwmans I, Claassen PAM, Hemmes K, de Wit JHW, Woudstra N et al (2003) Exploring new production methods of hydrogen/natural gas blends for mixing into the natural gas network of the Netherlands. In: Houbak N, Elmegaard B, Qvale B, Moran MJ (eds) Technical University of Denmark, Lyngby, pp 55–62Google Scholar
  2. 2.
    Florisson O (2004) NATURALHY EU Cordis Internet database.
  3. 3.
    Sisiopiku VP, Rousseau A, Fouad FH, Peters RW (2006) Technology evaluation of hydrogen light-duty vehicles. J Environ Eng ASCE 132(6):568–574CrossRefGoogle Scholar
  4. 4.
    Wright S, Pinkelman A (2008) Natural gas internal combustion engine hybrid passenger vehicle. Int J Energy Res 32(7):612–622CrossRefGoogle Scholar
  5. 5.
    Villante C, Genovese A (2012) Hydromethane: a bridge towards the hydrogen economy or an unsustainable promise? Int J Hydrogen Energy 37(15):11541–11548CrossRefGoogle Scholar
  6. 6.
    Lynch FE, Marmaro RW (1992) Special purpose blends of hydrogen and natural gas. US patentGoogle Scholar
  7. 7.
    Larsen JF, Wallace JS (1997) Comparison of emissions and efficiency of a turbocharged lean-burn natural gas and hythane-fueled engine. J Eng Gas Turbines Power Trans ASME 119(1):218–226CrossRefGoogle Scholar
  8. 8.
    Hemmes K (2004) Fuel cells. In: White RE, Conway BE, Vayenas CG (eds) Fuel cells; in modern aspects of electrochemistry, vol 37. Kluwer Academic/Plenum Publishers, New York, pp 131–251CrossRefGoogle Scholar
  9. 9.
    Au SF, Peelen WHA, Standaert FRAM, Hemmes K, Uchida I (2001) Verification of analytical fuel cell models by performance testing at a 110 cm(2) molten carbonate fuel cell. J Electrochem Soc 148(10):A1051–A1057CrossRefGoogle Scholar
  10. 10.
    Standaert F, Hemmes K, Woudstra N (1998) Analytical fuel cell modeling; non-isothermal fuel cells. J Power Sources 70(2):181–199CrossRefGoogle Scholar
  11. 11.
    Standaert F, Hemmes K, Woudstra N (1996) Analytical fuel cell modeling. J Power Sources 63(2):221–234CrossRefGoogle Scholar
  12. 12.
    Vollmar HE, Maier CU, Nolscher C, Merklein T, Poppinger M (2000) Innovative concepts for the coproduction of electricity and syngas with solid oxide fuel cells. J Power Sources 86(1–2):90–97CrossRefGoogle Scholar
  13. 13.
    Hemmes K, Patil A, Woudstra N (2005) Internal reforming SOFC system for flexible co production of hydrogen and power. In: Proceedings of the third international Conference on Fuel Cell Science, Engineering and technology, Ypsilanti, MichiganGoogle Scholar
  14. 14.
    Hemmes K, Patil A, Zachariah JL (2004) Flexible co-production of hydrogen and power using fuel cells. In: Conference proceedings of the international gas research conference. Vancouver, CanadaGoogle Scholar
  15. 15.
    Hemmes K, Patil A, Woudstra N (2008) Flexible coproduction of hydrogen and power using internal reforming solid oxide fuel cells system. J Fuel Cell Sci Technol 5(4): 041010-1–041010-6Google Scholar
  16. 16.
    Hemmes K, Kamp LM, Vernay ABH, de Werk G (2011) A multi-source multi-product internal reforming fuel cell energy system as a stepping stone in the transition towards a more sustainable energy and transport sector. Int J Hydrogen Energy 36(16):10221–10227CrossRefGoogle Scholar
  17. 17.
    Patakangas J, Ma Y, Jing YF, Lund P (2014) Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC). J Power Sources 263:315–331CrossRefGoogle Scholar
  18. 18.
    Zedtwitz PV, Petrasch J, Trommer D, Steinfeld A (2006) Hydrogen production via the solar thermal decarbonization of fossil fuels. Sol Energy 80(10):1333–1337CrossRefGoogle Scholar
  19. 19.
    Hirsch D, Epstein M, Steinfeld A (2001) The solar thermal decarbonization of natural gas. Int J Hydrogen Energy 26(10):1023–1033CrossRefGoogle Scholar
  20. 20.
    Abbas HF, Daud WMAW (2010) Hydrogen production by methane decomposition: a review. Int J Hydrogen Energy 35(3):1160–1190CrossRefGoogle Scholar
  21. 21.
    Muradov NZ, Veziroglu TN (2005) From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrogen Energy 30(3):225–237CrossRefGoogle Scholar
  22. 22.
    Cinti G, Hemmes K (2011) Integration of direct carbon fuel cells with concentrated solar power. Int J Hydrogen Energy 36(16):10198–10208CrossRefGoogle Scholar
  23. 23.
    Gur TM, Huggins RA (1992) Direct electrochemical conversion of carbon to electrical energy in a high-temperature fuel-cell. J Electrochem Soc 139(10):L95–L97CrossRefGoogle Scholar
  24. 24.
    Peelen WHA, Hemmes K, De Wit JHW (1998) Carbon a major energy carrier for the future? Direct carbon fuel cells and molten salt coal/biomass gasification. High Temp Mater Process (New York) 2(4):471–482CrossRefGoogle Scholar
  25. 25.
    Cherepy N, Krueger R, Cooper JF (2001) Direct electrochemical conversion of carbon anode fuels in molten salt media. In: Power sources for the new millennium, proceedings, vol 2000, no 22, pp 64–66Google Scholar
  26. 26.
    Hemmes K, Cooper JF, Selman JR (2013) Recent insights concerning DCFC development: 1998–2012. Int J Hydrogen Energy 38(20):8503–8513CrossRefGoogle Scholar
  27. 27.
    Gur TM (2013) Critical review of carbon conversion in “carbon fuel cells”. Chem Rev 113(8):6179–6206CrossRefGoogle Scholar
  28. 28.
    Cherepy NJ, Krueger R, Fiet KJ, Jankowski AF, Cooper JF (2005) Direct conversion of carbon fuels in a molten carbonate fuel cell. J Electrochem Soc 152(1):A80–A87CrossRefGoogle Scholar
  29. 29.
    Maag G, Zanganeh G, Steinfeld A (2009) Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon. Int J Hydrogen Energy 34(18):7676–7685CrossRefGoogle Scholar
  30. 30.
    Steinfeld A (2005) Solar thermochemical production of hydrogen: a review. Sol Energy 78(5):603–615CrossRefGoogle Scholar
  31. 31.
    Hirsch D, Epstein M, Steinfeld A (2001) The solar thermal decarbonization of natural gas. Int J Hydrogen Energy 26(10):1023–1033CrossRefGoogle Scholar
  32. 32.
    Petrasch J, Steinfeld A (2007) Dynamics of a solar thermochemical reactor for steam-reforming of methane. Chem Eng Sci 62(16):4214–4228CrossRefGoogle Scholar
  33. 33.
    Wang ZL, Naterer GF (2014) Integrated fossil fuel and solar thermal systems for hydrogen production and CO2 mitigation. Int J Hydrogen Energy 39(26):14227–14233CrossRefGoogle Scholar
  34. 34.
    De Falco M, Caputo G, Frattari S, Gironi F, Annesini MC (2014) Solar steam reforming for enriched methane production: reactor configurations modeling and comparison. Int J Hydrogen Energy 39(26):13979–13990CrossRefGoogle Scholar
  35. 35.
    Gokon N, Nakamura S, Hatamachi T, Kodama T (2014) Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production. Energy 68:773–782CrossRefGoogle Scholar
  36. 36.
    Hemmes K (2009) Multi-source multi-product and other integrated energy systems. Int J Integr Energy Syst 1(1): 1–15Google Scholar
  37. 37.
    Hemmes K, Patil A, Woudstra N (2008) Flexible coproduction of hydrogen and power using internal reforming solid oxide fuel cells system. J Fuel Cell Sci Technol 5(4)Google Scholar
  38. 38.
    Lee DH, Song YH, Kim KT, Lee JO (2013) Comparative study of methane activation process by different plasma sources. Plasma Chem Plasma Process 33(4):647–661CrossRefGoogle Scholar
  39. 39.
    Claassen PAM, de Vrije T, Koukios E, van Niel E, Eroglu I, Modigell M et al (2010) Non-thermal production of pure hydrogen from biomass: HYVOLUTION. J Clean Prod 18:S4–S8CrossRefGoogle Scholar
  40. 40.
    Claassen PAM, van Lier JB, Contreras AML, van Niel EWJ, Sijtsma L, Stams AJM et al (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52(6):741–755CrossRefGoogle Scholar
  41. 41.
    van Niel EWJ, Claassen PAM, Stams AJM (2003) Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 81(3):255–262CrossRefGoogle Scholar
  42. 42.
    Reddy SN, Nanda S, Dalai AK, Kozinski JA (2014) Supercritical water gasification of biomass for hydrogen production. Int J Hydrogen Energy 39(13):6912–6926CrossRefGoogle Scholar
  43. 43.
    Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM et al (2005) Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy 29(4):269–292CrossRefGoogle Scholar
  44. 44.
    Antal MJ, Allen SG, Schulman D, Xu XD, Divilio RJ (2000) Biomass gasification in supercritical water. Ind Eng Chem Res 39(11):4040–4053CrossRefGoogle Scholar
  45. 45.
    Boukis N, Abeln J, Kruse A, Schmieder H, Dinjus E (2008) Biomass treatment in supercritical water. The way from total oxidation to the gasification. In: Bridgwater AV (ed) Progress in thermochemical biomass conversion. Wiley, pp 109–121Google Scholar
  46. 46.
    Watanabe M, Inomata H, Arai K (2002) Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water. Biomass Bioenergy 22(5):405–410CrossRefGoogle Scholar
  47. 47.
    Waldner MH, Vogel F (2005) Renewable production of methane from woody biomass by catalytic hydrothermal gasification. Ind Eng Chem Res 44(13):4543–4551CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.TU DelftDelftThe Netherlands

Personalised recommendations