Skip to main content

Abstract

Most new agents are being designed to target molecular alterations involved in carcinogenesis. They are expected to produce antitumor activity only in the presence of the matching molecular alteration or companion biomarker. Prevalence of the molecular alteration is often low. Specific tumor types with the molecular alteration are often rare diseases, and testing the treatment effect independently in each of them is almost impossible. Therefore, several histologic-agnostic trials have been initiated to test several treatments directed against several molecular alterations in various tumor types. The objective of such “precision medicine” trials is then to investigate the added value of a treatment algorithm to select the best treatment based on molecular abnormalities. The design of these trials raises numerous statistical challenges that we review in this chapter. We use the SHIVA trial as a running example to illustrate the various methodological aspects of these trials, to highlight the benefit of randomization, and to review the answers that can be expected from these complex trials as well as the pitfalls. In particular, we explore the power of randomized trials in case only part of the algorithm would be efficient, that is if only some targeted agents actually work in the presence of the selected target, while others do not. Finally, we present alternative designs and discuss their main features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An MW, Mandrekar SJ, Sargent DJ (2013) Application of tumor measurement-based metrics in the real world. J Clin Oncol 31(34):4374

    Article  PubMed  Google Scholar 

  • André F, Bachelot T, Commo F et al (2014) Comparative genomic hybridisation array and dna sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (safir01/unicancer). Lancet Oncol 15(3):267–274

    Article  PubMed  Google Scholar 

  • Bang YJ, Van Cutsem E, Feyereislova A et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742):687–697

    Article  CAS  PubMed  Google Scholar 

  • Barker AD, Sigman CC, Kelloff GJ et al (2009) I-spy 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 86(1):97–100

    Article  CAS  PubMed  Google Scholar 

  • Boutron I, Estellat C, Guittet L et al (2006) Methods of blinding in reports of randomized controlled trials assessing pharmacologic treatments: a systematic review. PLoS Med 3(10):e425

    Article  PubMed Central  PubMed  Google Scholar 

  • Buyse M, Michiels S (2013) Omics-based clinical trial designs. Curr Opin Oncol 25(3):289–295

    PubMed  Google Scholar 

  • Buyse M, Quinaux E, Hendlisz A et al (2011) Progression-free survival ratio as end point for phase II trials in advanced solid tumors. J Clin Oncol 29(15):e451–e452, author reply e453

    Article  PubMed  Google Scholar 

  • Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

  • Hollebecque A, Massard C, Soria JC (2014) Implementing precision medicine initiatives in the clinic: a new paradigm in drug development. Curr Opin Oncol 26(3):340–346

    Article  CAS  PubMed  Google Scholar 

  • Horstmann E, McCabe MS, Grochow L et al (2002) Risks and benefits of phase 1 oncology trials, 1991 through 2002. N Engl J Med 352(9):895–904

    Article  Google Scholar 

  • Jung SH (1999) Rank tests for matched survival data. Lifetime Data Anal 5(1):67–79

    Article  CAS  PubMed  Google Scholar 

  • Kaplan R, Maughan T, Crook A et al (2013) Evaluating many treatments and biomarkers in oncology: a new design. J Clin Oncol 31(36):4562–4568

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim ES, Herbst RS, Wistuba II et al (2011) The battle trial: personalizing therapy for lung cancer. Cancer Discov 1(1):44–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le Tourneau C, Diéras V, Tresca P et al (2010) Current challenges for the early clinical development of anticancer drugs in the era of molecularly targeted agents. Target Oncol 5(1):65–72. doi:10.1007/s11523-010-0137-6

    Article  PubMed  Google Scholar 

  • Le Tourneau C, Servois V, Diéras V (2012) Tumor growth kinetics assessment: added value to RECIST in cancer patients treated with molecularly targeted agents. Br J Cancer 106(5):854–857

    Article  PubMed Central  PubMed  Google Scholar 

  • Le Tourneau C, Paoletti X, Servant N et al (2014) Randomised proof-of-concept phase II trial comparing targeted therapy based on tumor molecular profiling vs conventional therapy in patients with refractory cancer: results of the feasibility part of the shiva trial. Br J Cancer 111(1):17–24

    Article  PubMed Central  PubMed  Google Scholar 

  • Litière S, de Vries EGE, Seymour L et al (2014) The components of progression as explanatory variables for overall survival in the Response Evaluation Criteria in Solid Tumors 1.1 database. Eur J Cancer 50(10):1847–1853

    Article  PubMed  Google Scholar 

  • McShane LM, Cavenagh MM, Lively TG et al (2013) Criteria for the use of omics-based predictors in clinical trials. Nature 502(7471):317–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mick R, Crowley JJ, Carroll RJ (2000) Phase II clinical trial design for noncytotoxic anticancer agents for which time to disease progression is the primary endpoint. Control Clin Trials 21(4):343–359

    Article  CAS  PubMed  Google Scholar 

  • Mossé YP, Lim MS, Voss SD et al (2013) Safety and activity of crizotinib for paediatric patients with refractory solid tumors or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol 14(6):472–480

    Article  PubMed Central  PubMed  Google Scholar 

  • Olmos D, A’hern RP, Marsoni S et al (2012) Patient selection for oncology phase I trials: a multi-institutional study of prognostic factors. J Clin Oncol 30(9):996–1004

    Article  PubMed  Google Scholar 

  • Paoletti X, Mathoulin-Pèlissier S, Michiels S (2011) Facteurs pronostiques et facteurs prèdictifs. In: Mathoulin-Pèlissier S, Kramar A (eds) Méthodes biostatistiques appliquées à la recherche clinique en cancérologie. John Libbey Eurotext, Paris, France. p 382

    Google Scholar 

  • Prahallad A, Sun C, Huang S et al (2012) Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483(7387):100–103

    Article  CAS  PubMed  Google Scholar 

  • Presented by America’s Biopharmaceutical Research. Medicines in Development – Cancer. 2014. http://catalyst.phrma.org/medicines-in-development-for-cancer-2014

  • Ratain MJ, Eisen T, Stadler WM et al (2006) Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 24(16):2505–2512

    Article  CAS  PubMed  Google Scholar 

  • Rennie D (2003) Improving reports of studies of diagnostic tests: the STARD initiative. JAMA 289(1):89–90

    Google Scholar 

  • Ribba B, Holford NH, Magni P et al (2014) A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT Pharmacometrics Syst Pharmacol 3:e113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodon J, Soria JC, Berger R et al (2015) Challenges in initiating and conducting personalized cancer therapy trials: perspectives from WINTHER, a Worldwide Innovative Network (WIN) Consortium trial. Ann Oncol. Apr 23 [Epub ahead of print]

    Google Scholar 

  • Sargent DJ, Conley BA, Allegra C et al (2005) Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol 23(9):2020–2027

    Article  PubMed  Google Scholar 

  • Tournigand C, André T, Achille E et al (2004) FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 22(2):229–237

    Article  CAS  PubMed  Google Scholar 

  • Tsimberidou AM, Wen S, Hong DS et al (2014) Personalized medicine for patients with advanced cancer in the phase I program at MD Anderson: validation and landmark analyses. Clin Cancer Res 20(18):4827–4836

    Article  CAS  PubMed  Google Scholar 

  • Von Hoff DD, Stephenson JJ, Rosen P et al (2010) Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 28(33):4877–4883

    Article  Google Scholar 

  • Zalcberg JR, Verweij J, Casali PG et al (2005) Outcome of patients with advanced gastro-intestinal stromal tumors crossing over to a daily imatinib dose of 800 mg after progression on 400 mg. Eur J Cancer 41(12):1751–1757

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Paoletti PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paoletti, X., Asselain, B., Le Tourneau, C. (2015). Designs for Evaluating Precision Medicine Trials. In: Le Tourneau, C., Kamal, M. (eds) Pan-cancer Integrative Molecular Portrait Towards a New Paradigm in Precision Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-22189-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22189-2_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22188-5

  • Online ISBN: 978-3-319-22189-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics