Skip to main content
  • 686 Accesses

Abstract

Genomic characterization is a complex science that started several decades before the setup of microarrays. Nevertheless, due to the increasing need to characterize all genetic changes, and thanks to technical development such as improvement of throughput, miniaturization, computational biology, etc., a huge variety of DNA microarrays were set up in the 2000s. The use of microarray for translational studies has demonstrated their benefit to highlight genomic abnormalities for multiple diseases such as cancers. Whole genome analysis has demonstrated the genome complexity based on the type of alteration, their size, and their frequencies of tumor cells among normal cells. Genomic instability and subclonal identification of tumors were also other properties that can characterize for broad tumors (sarcomas, breast cancers, etc.). The development of high-content microarrays and the use of polymorphic probe (SNP) helped biologist and bioinformaticians to design pipelines to identify and characterize genomic alterations for several sources of specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • André F, Bachelot T, Commo F et al (2014) Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol 15(3):267–274. doi:10.1016/S1470-2045(13)70611-9. Epub 2014 Feb 7

    Article  PubMed  Google Scholar 

  • Bickmore WA (2001) Karyotype analysis and chromosome banding. Nature. doi:10.1038/npg.els.0001160

    Google Scholar 

  • Davies JJ, Wilson IM, Lam WL (2005) Array CGH technologies and their applications to cancer genomes. Chromosome Res 13(3):237–248

    Article  CAS  PubMed  Google Scholar 

  • Ferguson-Smith MA (2008) Cytogenetics and the evolution of medical genetics. Genet Med 10:553–559, doi:10.1097

    Article  PubMed  Google Scholar 

  • Forozan F, Karhu R, Kononen J et al (1997) Genome screening by comparative genomic hybridization. Trends Genet 13:405–409

    Article  CAS  PubMed  Google Scholar 

  • Gad S, Aurias A, Puget N et al (2001) Color bar coding the BRCA1 gene on combed DNA: a useful strategy for detecting large gene rearrangements. Genes Chromosomes Cancer 31(1):75–84

    Article  CAS  PubMed  Google Scholar 

  • Gad S, Klinger M, Caux-Moncoutier V et al (2002) Bar code screening on combed DNA for large rearrangements of the BRCA1 and BRCA2 genes in French breast cancer families. J Med Genet 39(11):817–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A A63(2):378–383

    Article  Google Scholar 

  • Garnis C, Coe BP, Ishkanian A et al (2004a) Novel regions of amplification on 8q distinct from the MYC locus and frequently altered in oral dysplasia and cancer. Genes Chromosomes Cancer 39:93–98

    Article  CAS  PubMed  Google Scholar 

  • Garnis C, Coe BP, Zhang L et al (2004b) Overexpression of LRP12, a gene contained within an 8q22 amplicon identified by high-resolution array CGH analysis of oral squamous cell carcinomas. Oncogene 23:2582–2586

    Article  CAS  PubMed  Google Scholar 

  • Garnis C, MacAulay C, Lam S et al (2004c) Genetic alteration on 8q distinct from MYC in bronchial carcinoma in situ lesions. Lung Cancer 44:403–404

    Article  PubMed  Google Scholar 

  • Hardenbol P, Banér J, Jain M et al (2003) Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol 21(6):673–678, Epub 2003 May 5

    Article  CAS  PubMed  Google Scholar 

  • Harper PS (2006) The discovery of the human chromosome number in Lund, 1955–1956. Hum Genet 119(1–2):226–232

    Article  PubMed  Google Scholar 

  • International HapMap Consortium (2003) The international HapMap project. Nature 426(6968):789–796

    Article  Google Scholar 

  • John HA, Birnstiel ML, Jones KW (1969) RNA-DNA hybrids at the cytological level. Nature 223(5206):582–587

    Article  CAS  PubMed  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821

    Article  CAS  PubMed  Google Scholar 

  • Kallioniemi OP, Kallioniemi A, Piper J et al (1994) Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosomes Cancer 10:231–243

    Article  CAS  PubMed  Google Scholar 

  • La Framboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37(13):4181–4193. doi:10.1093/nar/gkp552. Epub 2009 Jul 1

    Article  Google Scholar 

  • Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A 79(14):4381–4385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nilsson M, Malmgren H, Samiotaki M et al (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265(5181):2085–2088. doi:10.1126/science.7522346

    Article  CAS  PubMed  Google Scholar 

  • Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211

    Article  CAS  PubMed  Google Scholar 

  • Pollack JR, Sorlie T, Perou CM et al (2002) Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci U S A 99:12963–12968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Popova T, Manié E, Stoppa-Lyonnet D et al (2009) Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays. Genome Biol 10(11):R128. doi:10.1186/gb-2009-10-11-r128. Epub 2009 Nov 11

    Article  PubMed Central  PubMed  Google Scholar 

  • Ried T, Schröck E, Ning Y et al (1998) Chromosome painting: a useful art. Hum Mol Genet 7(10):1619–1626

    Article  CAS  PubMed  Google Scholar 

  • Singer MF (1982) SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28(3):433–434

    Article  CAS  PubMed  Google Scholar 

  • Volpi EV, Bridger JM (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques 45:385–409

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cottman M, Schiffman JD (2012) Molecular inversion probes: a novel microarray technology and its application in cancer research. Cancer Genet 205(7–8):341–355. doi:10.1016/j.cancergen.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  • Waye JS, Willard HF (1986) Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome. Mol Cell Biol 6(9):3156–3165

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weiner AM (2002) SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 14(3):343–350

    Article  CAS  PubMed  Google Scholar 

  • Weiss M, Hermsen M, Meijer G et al (1999) Comparative genomic hybridization. Mol Pathol 52:243–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Cécile Reyes, Emilie Henry, and Audrey Rapinat for providing illustrations of samples they analyzed for the genomic core facility. Thanks to Dr. Gudrun Schleiermacher, MD PhD, and Chicard Mathieu for their collaboration on ctDNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gentien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gentien, D., Reyes, C. (2015). Microarrays-Based Molecular Profiling to Identify Genomic Alterations. In: Le Tourneau, C., Kamal, M. (eds) Pan-cancer Integrative Molecular Portrait Towards a New Paradigm in Precision Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-22189-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22189-2_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22188-5

  • Online ISBN: 978-3-319-22189-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics