Skip to main content

A Directional Evolution Control Model for Network

  • Conference paper
  • First Online:
Intelligent Computing Theories and Methodologies (ICIC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9226))

Included in the following conference series:

  • 1515 Accesses

Abstract

In order to control the evolution direction of network to achieve certain goals, we proposed Directional Evolution Control Model for Network Based on Percolation Coefficient (PC-DECMN). Firstly, after the analysis of the spreading behavior based on SI model, we found that the influence scope was only related to the topology structure of network and initial source of infection. So the definition of percolation coefficient to measure the influence scope was proposed based on the transfer closure of adjacency matrix. Then, PC-DECMN was established based on the definition of percolation coefficient. Simulation experiment using the guarantee data of certain financial institution shows that, PC-DECMN can effectively control the evolution of guarantee network so that it can resist the risk better, compared with the natural evolved guarantee network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erdős, P., Rényi, A.: On the evolution of random graphs. Sel. Pap. Alfréd Rényi 2, 482–525 (1976)

    Google Scholar 

  2. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Disc. Data (TKDD) 1(1), 2 (2007)

    Article  Google Scholar 

  5. Li, X., Chen, G.: A local-world evolving network model. Physica A: Stat. Mech. Appl. 328(1), 274–286 (2003)

    Article  Google Scholar 

  6. Barrat, A., Barthélemy, M., Vespignani, A.: Modeling the evolution of weighted networks. Phys. Rev. E: Stat., Nonlin., Soft Matter Phys., 70(6 Pt 2), 066149 (2004)

    Google Scholar 

  7. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007)

    Article  Google Scholar 

  8. Ahn, J.W., Plaisant, C., Shneiderman, B.: A task taxonomy for network evolution analysis. IEEE Trans. Vis. Comput. Graph. 20(3), 365–376 (2014)

    Article  Google Scholar 

  9. Anderson, R.M., May, R.M.: Infectious Diseases of Humans, vol. 1. Oxford University Press, Oxford (1991)

    Google Scholar 

  10. Lü, L., Chen, D.B., Zhou, T.: The small world yields the most effective information spreading. New J. Phys. 13(12), 123005 (2011)

    Article  Google Scholar 

  11. Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C: Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings 22nd International Symposium on Reliable Distributed Systems, 2003, pp. 25–34. IEEE (2003)

    Google Scholar 

  12. Ganesh, A., Massoulié, L., Towsley, D: The effect of network topology on the spread of epidemics. In: Proceedings IEEE INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1455–1466. IEEE (2005)

    Google Scholar 

  13. Garas, A., Argyrakis, P., Rozenblat, C., Tomassini, M., Havlin, S.: Worldwide spreading of economic crisis. New J. Phys. 12(11), 113043 (2010)

    Article  Google Scholar 

  14. Hui, W.,Jiang-Hong, H., Lin, D., et al.: Dynamics of rumor spreading in mobile social networks. Acta. Phys. Sin. 2013, 62(11), 110505 (2003)

    Google Scholar 

  15. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

    Google Scholar 

  16. Volz, E.: SIR dynamics in random networks with heterogeneous connectivity. J. Math. Biol. 56(3), 293–310 (2008)

    Article  MathSciNet  Google Scholar 

  17. Warshall, S.: A theorem on boolean matrices. J. ACM 9(1), 11–12 (1962)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawei Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Luo, G., Zhao, Y. (2015). A Directional Evolution Control Model for Network. In: Huang, DS., Jo, KH., Hussain, A. (eds) Intelligent Computing Theories and Methodologies. ICIC 2015. Lecture Notes in Computer Science(), vol 9226. Springer, Cham. https://doi.org/10.1007/978-3-319-22186-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22186-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22185-4

  • Online ISBN: 978-3-319-22186-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics