Skip to main content

Sparse Learning for Robust Background Subtraction of Video Sequences

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9225))

Abstract

Sparse representation has been applied to background detecting by finding the best candidate with minimal reconstruction error using target templates. However most sparse representation based methods only consider the holistic representation and do not make full use of the sparse coefficients to discriminate between the foreground and the background. Learning overcomplete dictionaries that facilitate a sparse representation of the data as a liner combination of a few atoms from such dictionary leads to state-of-the-art results in image and video restoration and classification. To take these challenges, this paper proposes a new method for robust background detecting via sparse representation. Our method explores both the strength of the well-patch adaptive dictionary learning technique to video frame structure analysis and the robustness background detection by the l 1 -norm data-fidelity term. By using linear sparse combinations of dictionary atom, the proposed method learns the sparse representations of video frame regions corresponding to candidate particles. The experiments show that the proposed method is able to tolerate the background clutter and video frame deterioration, and improves the existing detecting performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pique-Regi, R., Monso-Varona, J., Ortega, A., et al.: Sparse representation and Bayesian detection of genome copy number alterations from microarray data. Bioinformatics 24(3), 309–318 (2008)

    Article  Google Scholar 

  2. Agarwal, S., Roth, D.: Learning a sparse representation for object detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 113–127. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Aharon, M., Elad, M., Bruckstein, A.: k-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  4. Yang, J., Yu, K., Gong, Y., et al.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1794–1801. IEEE (2009)

    Google Scholar 

  5. Zhou, H., Yuan, Y., Shi, C.: Object tracking using SIFT features and mean shift. Comput. Vis. Image Underst. 113(3), 345–352 (2009)

    Article  Google Scholar 

  6. Liu, B., Huang, J., Yang, L., et al.: Robust tracking using local sparse appearance model and k-selection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1313–1320. IEEE (2011)

    Google Scholar 

  7. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MathSciNet  Google Scholar 

  8. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  9. Xu, R, Zhang, B., Ye, Q., et al.: Cascaded L1-norm minimization learning (CLML) classifier for human detection. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 89–96. IEEE (2010)

    Google Scholar 

  10. Wright, J., Ma, Y., Mairal, J., et al.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)

    Article  Google Scholar 

  11. Liu, B., Yang, L., Huang, J., Meer, P., Gong, L., Kulikowski, C.: Robust and fast collaborative tracking with two stage sparse optimization. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 624–637. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Newcombe, R.A., Davison, A.J., Izadi, S., et al.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127–136. IEEE (2011)

    Google Scholar 

  13. Liu, Q., Wang, S., Luo, J.: A novel predual dictionary learning algorithm. J. Vis. Commun. Image Represent. 23(1), 182–193 (2012)

    Article  Google Scholar 

  14. Peng, Y., Ganesh, A., Wright, J., et al.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233–2246 (2012)

    Article  Google Scholar 

  15. Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2259–2272 (2011)

    Article  MATH  Google Scholar 

  16. Wright, J., Yang, A.Y., Ganesh, A., et al.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  17. Mei, X., Ling, H.: Robust visual tracking using 1 minimization. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1436–1443. IEEE (2009)

    Google Scholar 

  18. Mairal, J., Leordeanu, M., Bach, F., Hebert, M., Ponce, J.: Discriminative sparse image models for class-specific edge detection and image interpretation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 43–56. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Liu, Q., Luo, J., Wang, S., et al.: An augmented Lagrangian multi-scale dictionary learning algorithm. EURASIP J. Adv. Signal Process. 2011(1), 1–16 (2011)

    Article  MATH  Google Scholar 

  20. Wang, X., Ma, X., Grimson, W.E.L.: Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 539–555 (2009)

    Article  MATH  Google Scholar 

  21. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: International Conference on Pattern Recognition, vol. 2 (2004)

    Google Scholar 

  23. Benezeth, Y., Jodoin, P.-M., Emile, B., Rosenberger, C., Laurent, H.: Comparative study of background subtraction algorithms. J. Electron. Imaging 19(3), 033003–033003-12 (2010)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No.61373109, No.61003127), State Key Laboratory of Software Engineering (SKLSE2012-09-31).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Luo, Y., Zhang, H. (2015). Sparse Learning for Robust Background Subtraction of Video Sequences. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Methodologies. ICIC 2015. Lecture Notes in Computer Science(), vol 9225. Springer, Cham. https://doi.org/10.1007/978-3-319-22180-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22180-9_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22179-3

  • Online ISBN: 978-3-319-22180-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics