Skip to main content

Constructive Relationships Between Algebraic Thickness and Normality

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9210))

Abstract

We study the relationship between two measures of Boolean functions; algebraic thickness and normality. For a function f, the algebraic thickness is a variant of the sparsity, the number of nonzero coefficients in the unique \(\mathbb {F}_2\) polynomial representing f, and the normality is the largest dimension of an affine subspace on which f is constant. We show that for \(0 < \epsilon <2\), any function with algebraic thickness \(n^{3-\epsilon }\) is constant on some affine subspace of dimension \(\varOmega \left( n^{\frac{\epsilon }{2}}\right) \). Furthermore, we give an algorithm for finding such a subspace. We show that this is at most a factor of \(\varTheta (\sqrt{n})\) from the best guaranteed, and when restricted to the technique used, is at most a factor of \(\varTheta (\sqrt{\log n})\) from the best guaranteed. We also show that a concrete function, majority, has algebraic thickness \(\varOmega \left( 2^{n^{1/6}}\right) \).

Contribution of the National Institute of Standards and Technology. The rights of this work are transferred to the extent transferable according to title 17 § 105 U.S.C.

Partially supported by the Danish Council for Independent Research, Natural Sciences.

M.G. Find—Most of this work was done while at the University of Southern Denmark.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The constant 6.12 does not appear explicitly in these articles, however it can be derived using similar calculations as in the cited papers. This also follows from Theorem 6 later in this paper. We remark that 6.12 is not optimal.

References

  1. Boyar, J., Find, M., Peralta, R.: Four measures of nonlinearity. In: Spirakis, P.G., Serna, M.J. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 61–72. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Boyar, J., Find, M.G.: Constructive relationships between algebraic thickness and normality. CoRR abs/1410.1318 (2014)

    Google Scholar 

  3. Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of boolean functions over the basis (\(\wedge,\oplus \), 1). Theor. Comput. Sci. 235(1), 43–57 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlet, C.: On cryptographic complexity of boolean functions. In: Mullen, G., Stichtenoth, H., Tapia-Recillas, H. (eds.) Finite Fields with Applications to Coding Theory, Cryptography and Related Areas, pp. 53–69. Springer, Berlin (2002)

    Chapter  Google Scholar 

  5. Carlet, C.: On the algebraic thickness and non-normality of boolean functions. In: Information Theory Workshop, pp. 147–150. IEEE (2003)

    Google Scholar 

  6. Carlet, C.: On the degree, nonlinearity, algebraic thickness, and nonnormality of boolean functions, with developments on symmetric functions. IEEE Trans. Inf. Theor. 50(9), 2178–2185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlet, C.: The complexity of boolean functions from cryptographic viewpoint. In: Krause, M., Pudlàk, P., Reischuk, R., van Melkebeek, D. (eds.) Complexity of Boolean Functions. Dagstuhl Seminar Proceedings, vol. 06111. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2006)

    Google Scholar 

  8. Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge (2010)

    Chapter  Google Scholar 

  9. Charpin, P.: Normal boolean functions. J. Complexity 20(2–3), 245–265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, G., Tal, A.: Two structural results for low degree polynomials and applications. CoRR abs/1404.0654 (2014)

    Google Scholar 

  11. Dickson, L.E.: Linear Groups with an Exposition of the Galois Field Theory. Teubner’s Sammlung von Lehrbuchern auf dem Gebiete der matematischen Wissenschaften VL, x+312 (1901)

    Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  13. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)

    Article  MATH  Google Scholar 

  14. Jukna, S.: Boolean Function Complexity - Advances and Frontiers. Algorithms and combinatorics, vol. 27. Springer, Heidelberg (2012)

    Google Scholar 

  15. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) Fast Software Encryption. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  16. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E., Costello Jr, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptography. The Springer International Series in Engineering and Computer Science, vol. 276, pp. 227–233. Springer, US (1994)

    Chapter  Google Scholar 

  17. Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 549–562. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  18. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  19. Mihaljevic, M.J., Gangopadhyay, S., Paul, G., Imai, H.: Generic cryptographic weakness of k-normal boolean functions in certain stream ciphers and cryptanalysis of grain-128. Periodica Mathematica Hungarica 65(2), 205–227 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Razborov, A.A.: Lower bounds on the size of bounded depth circuits over a complete basis with logical addition. Math. Notes 41(4), 333–338 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rothaus, O.S.: On “bent" functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shaltiel, R.: Dispersers for affine sources with sub-polynomial entropy. In: Ostrovsky, R. (ed.) FOCS. pp. 247–256. IEEE (2011)

    Google Scholar 

  23. Subbotovskaya, B.A.: Realizations of linear functions by formulas using +,*,-. Math. Dokl. 2(3), 110–112 (1961)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Gausdal Find .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland (outside the US)

About this paper

Cite this paper

Boyar, J., Find, M.G. (2015). Constructive Relationships Between Algebraic Thickness and Normality. In: Kosowski, A., Walukiewicz, I. (eds) Fundamentals of Computation Theory. FCT 2015. Lecture Notes in Computer Science(), vol 9210. Springer, Cham. https://doi.org/10.1007/978-3-319-22177-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22177-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22176-2

  • Online ISBN: 978-3-319-22177-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics