Skip to main content

Block Representation of Reversible Causal Graph Dynamics

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9210))

Included in the following conference series:

Abstract

Causal Graph Dynamics extend Cellular Automata to arbitrary, bounded-degree, time-varying graphs. The whole graph evolves in discrete time steps, and this global evolution is required to have a number of physics-like symmetries: shift-invariance (it acts everywhere the same) and causality (information has a bounded speed of propagation). We study a further physics-like symmetry, namely reversibility. More precisely, we show that Reversible Causal Graph Dynamics can be represented as finite-depth circuits of local reversible gates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arrighi, P., Dowek, G.: Causal graph dynamics. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 54–66. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically universal. Nat. Comput. 11, 13–22 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arrighi, P., Martiel, S., Nesme, V.: Generalized Cayley graphs and cellular automata over them. submitted (long version) (2013). Pre-print arXiv:1212.0027

  4. Arrighi, P., Martiel, S., Perdrix, P.: Reversible Causal Graph Dynamics (2015). Pre-print arXiv:1502.04368

  5. Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. J. Comput. Syst. Sci. 77, 372–378 (2010). QIP 2010 (long talk)

    Article  MathSciNet  Google Scholar 

  6. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a synchronization mechanism. J. Comput. Syst. Sci. 34(2–3), 377–408 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Durand-Lose, J.O.: Representing reversible cellular automata with reversible block cellular automata. Discrete Math. Theor. Comput. Sci. 145, 154 (2001)

    Google Scholar 

  8. Ehrig, H., Lowe, M.: Parallel and distributed derivations in the single-pushout approach. Theor. Comput. Sci. 109(1–2), 123–143 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 3, 320–375 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kari, J.: Representation of reversible cellular automata with block permutations. Theory Comput. Syst. 29(1), 47–61 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Kari, J.: On the circuit depth of structurally reversible cellular automata. Fundamenta Informaticae 38(1–2), 93–107 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Konopka, T., Markopoulou, F., Smolin, L.: Quantum graphity. Arxiv preprint (2006). Pre-print arXiv:hep-th/0611197

  13. Morita, K.: Computation-universality of one-dimensional one-way reversible cellular automata. Inf. Process. Lett. 42(6), 325–329 (1992)

    Article  MATH  Google Scholar 

  14. Sorkin, R.: Time-evolution problem in Regge calculus. Phys. Rev. D. 12(2), 385–396 (1975)

    Article  MathSciNet  Google Scholar 

  15. Taentzer, G.: Parallel and distributed graph transformation: Formal description and application to communication-based systems. Ph.D. thesis, Technische Universitat Berlin (1996)

    Google Scholar 

  16. Taentzer, G.: Parallel high-level replacement systems. Theor. comput. sci. 186(1–2), 43–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tomita, K., Kurokawa, H., Murata, S.: Graph automata: natural expression of self-reproduction. Phys. D: Nonlin. Phenom. 171(4), 197–210 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been funded by the ANR-12-BS02-007-01 TARMAC grant, the ANR-10-JCJC-0208 CausaQ grant, and the John Templeton Foundation, grant ID 15619. The authors acknowledge enlightening discussions with Bruno Martin and Emmanuel Jeandel. This work has been partially done when PA was delegated at Inria Nancy Grand Est, in the project team Carte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Martiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Arrighi, P., Martiel, S., Perdrix, S. (2015). Block Representation of Reversible Causal Graph Dynamics. In: Kosowski, A., Walukiewicz, I. (eds) Fundamentals of Computation Theory. FCT 2015. Lecture Notes in Computer Science(), vol 9210. Springer, Cham. https://doi.org/10.1007/978-3-319-22177-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22177-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22176-2

  • Online ISBN: 978-3-319-22177-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics