Skip to main content

Incremental Complexity of a Bi-objective Hypergraph Transversal Problem

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9210))

Included in the following conference series:

  • 635 Accesses

Abstract

The hypergraph transversal problem has been intensively studied, both from a theoretical and a practical point of view. In particular, its incremental complexity is known to be quasi-polynomial in general and polynomial for bounded hypergraphs. Recent applications in computational biology however require to solve a generalization of this problem, that we call bi-objective transversal problem. The instance is in this case composed of a pair of hypergraphs \((\mathcal {A},\mathcal {B})\), and the aim is to enumerate minimal sets which hit all the hyperedges of \(\mathcal {A}\) while intersecting a minimal set of hyperedges of \(\mathcal {B}\). In this paper, we formalize this problem and relate it to the enumeration of minimal hitting sets of bundles. We show cases when under degree or dimension contraints these problems remain NP-hard, and give a polynomial algorithm for the case when \(\mathcal {A}\) has bounded dimension, by building a hypergraph whose transversals are exactly the hitting sets of bundles.

R. Andrade—Financially supported by CNPq – Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angel, E., Bampis, E., Gourvès, L.: On the minimum hitting set of bundles problem. Theoret. Comput. Sci. 410(45), 4534–4542 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berge, C.: Hypergraphs: Combinatorics of Finite Sets. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  3. Bertrand, D., Chng, K.R., Sherbaf, F.G., Kiesel, A., Chia, B.K.H., Sia, Y.Y., Huang, S.K., Hoon, D.S.B., Liu, T., Hillmer, A., Hillmer, A., Nagarajan, N.: Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic Acids Res. 43(3), 1332–1344 (2015)

    Article  Google Scholar 

  4. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: An efficient incremental algorithm for generating all maximal independent sets in hypergraphs of bounded dimension. Parallel Process. Lett. 10, 253–266 (2000)

    Article  MathSciNet  Google Scholar 

  5. Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: Generating partial and multiple transversals of a hypergraph. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 588–599. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Damaschke, P.: Parameterizations of hitting set of bundles and inverse scope. J. Comb. Optim. 36(2012), 1–12 (2013)

    Google Scholar 

  7. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems in logic and AI. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 549–564. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and generating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualization: a brief survey. Discrete Appl. Math. 156(11), 2035–2049 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gurvich, V., Khachiyan, L.: On generating the irredundant conjunctive and disjunctive normal forms of monotone boolean functions. Discrete Appl. Math. 96–97, 363–373 (1999)

    Article  MathSciNet  Google Scholar 

  13. Hädicke, O., Klamt, S.: Computing complex metabolic intervention strategies using constrained minimal cut sets. Metab. Eng. 13(2), 204–213 (2011)

    Article  Google Scholar 

  14. Haus, U.-U., Klamt, S., Stephen, T.: Computing knock-out strategies in metabolic networks. J. Comput. Biol. 15(3), 259–268 (2008)

    Article  MathSciNet  Google Scholar 

  15. Jungreuthmayer, C., Nair, G., Klamt, S., Zanghellini, J.: Comparison and improvement of algorithms for computing minimal cut sets. BMC Bioinf. 14(1), 318 (2013)

    Article  Google Scholar 

  16. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V.: An efficient implementation of a quasi-polynomial algorithm for generating hypergraph transversals and its application in joint generation. Discrete Appl. Math. 154(16), 2350–2372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V.: A global parallel algorithm for the hypergraph transversal problem. Inf. Process. Lett. 101(4), 148–155 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khachiyan, L., Boros, E., Gurvich, V., Elbassioni, K.: Computing many independent sets for hypergraphs in parallel. Parallel Process. Lett. 17(02), 141–152 (2007)

    Article  MathSciNet  Google Scholar 

  19. Murakami, K., Uno, T.: Efficient algorithms for dualizing large-scale hypergraphs. Discrete Appl. Math. 170, 83–94 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sellis, T.K.: Multiple-query optimization. ACM Trans. Database Sys. 13(1), 23–52 (1988)

    Article  Google Scholar 

  21. Toda, T.: Hypergraph transversal computation with binary decision diagrams. In: Demetrescu, C., Marchetti-Spaccamela, A., Bonifaci, V. (eds.) SEA 2013. LNCS, vol. 7933, pp. 91–102. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their remarks which helped us to make the paper clearer, and particularly for pointing out the pre-existing notion of hitting sets of bundles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Birmelé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Andrade, R., Birmelé, E., Mary, A., Picchetti, T., Sagot, MF. (2015). Incremental Complexity of a Bi-objective Hypergraph Transversal Problem. In: Kosowski, A., Walukiewicz, I. (eds) Fundamentals of Computation Theory. FCT 2015. Lecture Notes in Computer Science(), vol 9210. Springer, Cham. https://doi.org/10.1007/978-3-319-22177-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22177-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22176-2

  • Online ISBN: 978-3-319-22177-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics