Skip to main content

Complexity of Suffix-Free Regular Languages

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9210))

Included in the following conference series:

Abstract

A sequence \((L_k,L_{k+1} \dots )\) of regular languages in some class \({\mathcal C}\), where n is the state complexity of \(L_n\), is called a stream. A stream is most complex in class \({\mathcal C}\) if its languages together with their dialects (that is, languages that differ only very slightly from the languages in the stream) meet the state complexity bounds for boolean operations, product (concatenation), star, and reversal, have the largest syntactic semigroups, and have the maximal numbers of atoms, each of which has maximal state complexity. It is known that there exist such most complex streams in the class of regular languages, and also in the classes of right, left, and two-sided ideals. In contrast to this, we prove that there does not exist a most complex stream in the class of suffix-free regular languages. However, we do exhibit one ternary suffix-free stream that meets the bound for product and whose restrictions to binary alphabets meet the bounds for star and boolean operations. We also exhibit a quinary stream that meets the bounds for boolean operations, reversal, size of syntactic semigroup, and atom complexities. Moreover, we solve an open problem about the bound for the product of two languages of state complexities m and n in the binary case by showing that it can be met for infinitely many m and n.

Two transition semigroups play an important role for suffix-free languages: semigroup \(\mathbf {T}^{\leqslant 5}(n)\) is the largest suffix-free semigroup for \(n\leqslant 5\), while semigroup \(\mathbf {T}^{\geqslant 6}(n)\) is largest for \(n=2,3\) and \(n\geqslant 6\). We prove that all witnesses meeting the bounds for the star and the second witness in a product must have transition semigroups in \(\mathbf {T}^{\leqslant 5}(n)\). On the other hand, witnesses meeting the bounds for reversal, size of syntactic semigroup and the complexity of atoms must have semigroups in \(\mathbf {T}^{\geqslant 6}(n)\).

This work was supported by the Natural Sciences and Engineering Research Council of Canada grant No. OGP000087, and by Polish NCN grant DEC-2013/09/N/ST6/01194.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang, T., Brzozowski, J.: Languages convex with respect to binary relations, and their closure properties. Acta Cybernet. 19(2), 445–464 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  3. Brzozowski, J.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15(1/2), 71–89 (2010)

    Google Scholar 

  4. Brzozowski, J.: In search of the most complex regular languages. Int. J. Found. Comput. Sc. 24(6), 691–708 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brzozowski, J., Davies, G.: Most complex regular right-ideal languages. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 90–101. Springer, Heidelberg (2014)

    Google Scholar 

  6. Brzozowski, J., Davies, S.: Quotient complexities of atoms in regular ideal languages (2015). http://arxiv.org/abs/1503.02208

  7. Brzozowski, J., Davies, S., Liu, B.Y.V.: Most complex regular ideals (2015). (in preparation)

    Google Scholar 

  8. Brzozowski, J., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bifix-, factor-, and subword-free regular languages. Acta Cybernet. 21, 507–527 (2014)

    MathSciNet  Google Scholar 

  9. Brzozowski, J., Li, B., Ye, Y.: Syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages. Theoret. Comput. Sci. 449, 37–53 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brzozowski, J., Szykuła, M.: Complexity of suffix-free regular languages (2015). http://arxiv.org/abs/1504.05159

  11. Brzozowski, J., Szykuła, M.: Upper bound for syntactic complexity of suffix-free languages. In: Okhotin, A., Shallit, J. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 33–45. Springer, Heidelberg (2015). http://arxiv.org/abs/1412.2281

    Google Scholar 

  12. Brzozowski, J., Tamm, H.: Theory of átomata. Theoret. Comput. Sci. 539, 13–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.) MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Han, Y.S., Salomaa, K.: State complexity of basic operations on suffix-free regular languages. Theoret. Comput. Sci. 410(27–29), 2537–2548 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iván, S.: Complexity of atoms, combinatorially (2015). http://arxiv.org/abs/1404.6632

  17. Jirásková, G., Olejár, P.: State complexity of union and intersection of binary suffix-free languages. In: Bordihn, H., et al. (eds.) NMCA, pp. 151–166. Austrian Computer Society, Wien (2009)

    Google Scholar 

  18. Leiss, E.: Succinct representation of regular languages by boolean automata. Theoret. Comput. Sci. 13, 323–330 (2009)

    Article  MathSciNet  Google Scholar 

  19. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad. Nauk SSSR 194, 1266–1268 (1970). (Russian): English translation: Soviet Math. Dokl. 11, 1373–1375 (1970)

    MathSciNet  Google Scholar 

  20. Mirkin, B.G.: On dual automata. Kibernetika (Kiev) 2, 7–10 (1966). (Russian): English translation: Cybernetics 2, 6–9 (1966)

    MathSciNet  Google Scholar 

  21. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 679–746. Springer, New York (1997)

    Chapter  Google Scholar 

  22. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Brzozowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Brzozowski, J., Szykuła, M. (2015). Complexity of Suffix-Free Regular Languages. In: Kosowski, A., Walukiewicz, I. (eds) Fundamentals of Computation Theory. FCT 2015. Lecture Notes in Computer Science(), vol 9210. Springer, Cham. https://doi.org/10.1007/978-3-319-22177-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22177-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22176-2

  • Online ISBN: 978-3-319-22177-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics