Skip to main content

Methods for Decrease of Radionuclides Transfer from Soil to Agricultural Vegetation

  • Chapter
Radionuclides in the Environment

Abstract

Characteristics of radioactive contamination of soils as a result of radiation accidents at Chernobyl nuclear power plant (USSR/Ukraine), Fukushima dai-ichi nuclear power plant (Japan), and Mayak PA (USSR/Russia) are considered. The evaluation of the efficiency methods for returning radioactively contaminated lands to farming use is given. It is shown that after a radiation accident, the major part of radionuclides is fixed in the upper 5–7 cm layer of a soil; further slow migration of a radionuclide to deeper layers of a soil occurs. Over 36 years after radiation accident, 137Cs and 90Sr radionuclides are located in a plowing horizon (0–25 cm); therefore, they are available for roots. The effectiveness of rehabilitation activities depends on physicochemical characteristics of a soil, radionuclides speciation in a soil solution, and a species of growing plant. The most efficient methods suggested for decrease of 137Cs and 90Sr radionuclides transfer from a soil to agricultural plants are transfer of the upper layer of radioactively contaminated soil to a depth of 80 cm and deeper (radionuclides transfer decreases up to a factor of 50) and addition of ferrocyanide sorbents based on natural aluminosilicates (up to a factor of 20). Addition of various ameliorators results in decrease of radionuclides transfer by up to 5 times independently of ameliorator type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ageets VY (2001) System of radioecological countermeasures in the agrosphere of Belarus, vol 4–6. Institute of Radiology Republican Research and Development Unitary Enterprise, Gomel, p 157–189

    Google Scholar 

  • Alexakhin RM, Naryshkin MA (1977) Migration of radionuclides in forest ecosystems. Nauka, Moscow

    Google Scholar 

  • Alexakhin RM, Vasilev AV, Dikarev VG, Egorova VA (1992) Agricultural radioecology. Ecologia, Moscow

    Google Scholar 

  • Arutyunyan RV, Bol’shov LA, Zenich TS, Reshetin VP (1993) Mathematical simulation of vertical migration of 137Cs and 134Cs in soil. Atom Energy 74:206–211

    Article  Google Scholar 

  • Batorshin GS, Mokrov YG (2013) The experience of elimination of consequences of the accident at Mayak PA in 1957. Rad Saf Quest 1:13–20

    Google Scholar 

  • Baturin VA (1997) Vertical migration of radionuclides in the soil of the East-Ural track and its effect on the intensity of the outgoing radiation. Atom Energy 82:44–48

    Article  CAS  Google Scholar 

  • Belli M, Sansone U, Ardiani R, Feoli E, Scimone M, Menegon S, Parente G (1995) The effect of fertilizer application on 137 Cs up take by different plant specials and vegetation types. J Environ Radioact 27:75–89

    Article  CAS  Google Scholar 

  • Belous NM, Malyavko GP, Shapovalov VF, Talyzin VV, Prudnikov PV (2009) The influence of long-term use of fertilizers and agrotechnical actions on 137 Cs accumulation in a harvest of agricultural plants during a distant period after the Chernobyl accident. Prob Agrochem Ecol 31:25–31

    Google Scholar 

  • Bogdevich IM, Podolyak AG (2006) Accumulation of 137Cs and 90Sr in a herbage of basic types of grasslands in Belarusian Polesye as a dependence on parameters of vertical migration and radionuclides speciation in soils. Pedol Agrochem 1:233–246

    Google Scholar 

  • Bondar PF (1998) About the assessment of efficiency of sorbents as means of radionuclides retention in soils. Radiat Biol Radioecol 2:267–272

    Google Scholar 

  • Budarkov VA, Mayakov EA, Torubarova AA, Kalinin NF, Gelis VM, Milyutin VV, Penzin RA (1994) Method of caesium radionuclides transfer decreasing from soil to vegetation. Russian Federation Patent № 2013913 from 15.06.1994

    Google Scholar 

  • Campbell LS, Davies BE (1997) Experimental investigation of plant uptake of caesium from soils amended with clinoptilolite and calcium carbonate. Plant Soil 189:65–74

    Article  CAS  Google Scholar 

  • Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Dai-ichi nuclear power plant into the atmosphere. J Nucl Sci Technol 48:1129–1134

    Article  CAS  Google Scholar 

  • Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochisky B (1999) Phytoremediation of radiocaesium contaminated soil in the vicinity of Chernobyl, Ukraine. Environ Sci Technol 33:469–475

    Article  CAS  Google Scholar 

  • Ehlken S, Kirchner G (2002) Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. J Environ Radioact 58:97–112

    Article  CAS  Google Scholar 

  • Eizenbad М (1967) Radioactivity of the environment. Atomizdat, Moscow

    Google Scholar 

  • Endo S, Kimura S, Takatsuji T, Nanasawa K, Imanaka T, Shizuma K (2012) Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi nuclear power plant accident and associated estimated cumulative external dose estimation. J Environ Radioact 111:18–27

    Article  CAS  Google Scholar 

  • Grinchenko TA, Daragin YV, Alexeychik NN (1985) Activity of ions and buffer ability of sod-podzol soils of Belarussian SSR with respect to potassium. Agrochemistry 3:39–43

    Google Scholar 

  • Hampton CR, Broadley MR, White PJ (2005) Short review: the mechanisms of radiocaesium uptake by Arabidopsis roots. Nukleonica 50:83–88

    Google Scholar 

  • Helal AA, Arida HA, Rizk HE, Khalifa SM (2007) Interaction of cesium with humic materials: a comparative study of radioactivity and ISE measurements. Radiochemistry 49:523–529

    Article  CAS  Google Scholar 

  • Hirano M, Yonomoto T, Ishigaki M, Watanabe N, Maruyama Y, Sibamoto Y, Watanabe T, Moriyama K (2012) Insights from review and analysis of the Fukushima Dai-ichi accident. J Nucl Sci Technol 49:1–17

    Article  CAS  Google Scholar 

  • Ivashkevich LS, Bondar YI (2008) Effect of basic chemical characteristics of soils on mobility of radionuclides in them. Radiochemistry 50:98–102

    Article  CAS  Google Scholar 

  • Kaneyasu N, Ohashi H, Suzuki F, Okuda T, Ikemori F (2012) Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident. Environ Sci Technol 46:5720–5726

    Article  CAS  Google Scholar 

  • Kang DJ, Seo YJ, Saito T, Suzuki H, Ishii Y (2012) Uptake and translocation of cesium-133 in napier grass (Pennisetum purpureum Schum.) under hydroponic conditions. Ecotoxicol Environ Saf 82:122–126

    Article  CAS  Google Scholar 

  • Kato H, Onda Y, Teramage M (2012) Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 111:59–64

    Article  CAS  Google Scholar 

  • Katsnelson YY, Sklyarova ES, Likhachyov VA, Zelenshchikov GV, Kapustyan AS (1983) Using of natural sorbents from Rostov region deposits for ecological remediation of lands being under high anthropogenic impact. Radiochemistry 2:111–121

    Google Scholar 

  • Katsumi H (2012) 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results. J Environ Radioact 111:13–17

    Article  Google Scholar 

  • Kobets SA, Fedorova VM, Pshinko GN, Kosorukov AA, Demchenko VY (2014) Effect of humic acids and iron hydroxides deposited on the surface of clay minerals on the 137Cs immobilization. Radiochemistry 56:325–331

    Article  CAS  Google Scholar 

  • Kornilovich BY, Pshinko GN, Spasenova LN (2000) Influence of humic compounds on caesium-137 sorption by mineral components of soils. Radiochemistry 42:92–96

    Google Scholar 

  • Kudryashov NA, Serebryakova IE (1993) Mathematical modeling of the migration of long-lived radionuclides in soil as a result of radioactive fallout. Atom Energy 74:225–228

    Article  Google Scholar 

  • Kuznetsov VK, Sanzharova NI, Alexakhin RM, Anisimov VS, Abramova OB (2001) The influence of phosphate fertilizers on 137Cs uptake by agricultural plants. Agrochemistry 9:47

    Google Scholar 

  • Lasat MM, Ebbs SD, Kochian LV (1998) Phytoremediation of a radiocaesium-contaminated soil: evaluation of caesium-137 bioaccumulation in shoots of three plant species. J Environ Qual 27:165–169

    Article  CAS  Google Scholar 

  • Martyushov VV, Spirin DA, Romanov GN, Bazylev VV, Martyushov VZ (1996) Dynamics of speciation and migration of strontium-90 in soils of the East-Ural radioactive track. Quest Rad Saf 3:28–38

    Google Scholar 

  • Mineeva VG (1989) Practical works on agrochemistry. MSU, Moscow

    Google Scholar 

  • Misaelides P (2011) Application of natural zeolites in environmental remediation: a short review. Microporous Mesoporous Mater 144:15–18

    Article  CAS  Google Scholar 

  • Moiseev IT, Tikhomirov FA, Martyushov VS (1988) On the assessment of influence of mineral fertilizers on the dynamics of exchangeable 137Cs in soils and on its bioavailability for vegetables. Agrochemistry 5:86–92

    Google Scholar 

  • Nakamaru Y, Ishikawa N, Tagami K, Uchida S (2007) Role of soil organic compounds in the mobility of radiocesium in agricultural soils common in Japan. Colloids Surf A 306:111–117

    Article  CAS  Google Scholar 

  • Nakano M, Yong RN (2013) Overview of rehabilitation schemes for farmlands contaminated with radioactive cesium released from Fukushima power plant. Eng Geol 155:87–93

    Article  Google Scholar 

  • Nikipelov BV, Romanov GN, Buldakov LA, Babaev NS, Kholina YB, Mikerin EI (1989) A radiation accident in the southern Urals in 1957. Sov Atom Energy 67:569–576

    Article  Google Scholar 

  • Odintsov AA, Sazhenyuk AD, Satsyuk VA (2004) Association of 90xSr, 137Cs, 239,240Pu, 241Am, and 244Cm with soil absorbing complex in soils typical of the vicinity of the Chernobyl NPP. Radiochemistry 46:95–101

    Article  CAS  Google Scholar 

  • Odintsov AA, Pazukhin EM, Sazhenyuk AD (2005) Distribution of 137Cs, 90Sr, 239 + 240Pu, 241Am, and 244Cm among components of organic compounds of soils in near exclusion zone of the Chernobyl NPP. Radiochemistry 47:96–101

    Article  CAS  Google Scholar 

  • Ovchinnikov NA, Bezdenezhnykh VS (1996) Method of soils rehabilitation. Russian Federation Patent № 2064748 from 10.08.1996

    Google Scholar 

  • Panov AV, Alexakhin RM, Prudnikov PV, Novikov AA, Muzalevskaya AA (2009) Influence of protective activity on 137Cs accumulation by farming plants from soil after Chernobyl accident. Pedology J 4:484–497

    Google Scholar 

  • Petrova MA, Flowers AG, Krip IM, Shimchuk TV, Petrushka IM (2008) Sorption of Sr on clay minerals modified with ferrocyanides and hydroxides of transition metals. Radiochemistry 50:502–507

    Article  CAS  Google Scholar 

  • Polyakov EV, Volkov IV, Khelbnikov NA (2015) Competitive sorption of cesium and other microelements onto iron (III) hexacyanoferrate(II) in the presence of humic acids. Radiochemistry 57:161–171

    Article  CAS  Google Scholar 

  • Popov VE, Il’icheva NS, Stepina IA, Maslova KM (2011) Influence of the potassium and ammonium ion concentrations on the selective sorption of 137Cs by illite and clinoptilolite. Radiochemistry 53:97–102

    Article  CAS  Google Scholar 

  • Prister BS, Perepelyatnikova LV, Perepelyatnikov GP (1991) Problems of agricultural radioecology. Naukova Dumka, Kiev

    Google Scholar 

  • Prokhorov VM (1981) Migration of radioactive pollutants in soils. Energoatomizdat, Moscow

    Google Scholar 

  • Russian State Standard 17.4.4.01-84 (1984) Soils. Determination of cation exchange capacity by modified Bobko-Askinazi-Aleshin method, developed in Central Institute of Agrochemical Service of Farming Industry. Moscow

    Google Scholar 

  • Russian State Standard 262113-91 (1991) Soils. Method of determination of organic carbon content. Moscow

    Google Scholar 

  • Sakharov VK (2006) Radioecology. Lan, Saint Petersburg

    Google Scholar 

  • Sanzharova NI, Kuznetsov VK, Brovkin VI, Kozhik ZA (1998) The assessment of efficiency of protective measures on soils contaminated by radionuclides. Agrochem Bull 4:22–26

    Google Scholar 

  • Sanzharova NI, Sysoeva AA, Isamov NN, Alexakhin RM, Kuznetsov VK, Zhigareva TL (2005) Chemistry role in remediation farming land being under radioactive pollution. Russ Chem J 49:26–34

    CAS  Google Scholar 

  • Sapozhnikov JA, Aliev RA, Kalmykov SN (2006) Radioactivity of the environment. Binom, Moscow

    Google Scholar 

  • Shov G, Bell JNB (1989) The kinetics of caesium absorbtion by roots of winter Wheat and the possible consequences for the derivation of soil-to-plant transfer factor for radiocaesium. J Environ Radioact 10:213–231

    Article  Google Scholar 

  • Smolders E, Van den Brande K, Merckx R (1997) Concentrations of 137Cs and K in soil solution predict the plant availability of 137Cs in soils. Environ Sci Technol 31:3432–3438

    Article  CAS  Google Scholar 

  • Staunton S, Hinsinger P, Guivarch A, Brechignac F (2003) Root uptake and translocation of radiocaesium from agricultural soils bu various plant species. Plant Soil 254:443–445

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reaction. Willey, New York

    Google Scholar 

  • Takeda A, Tskada H, Nakao A, Takaky Y, Hisamatsu S (2013) Time-dependent changes of phytoavailability of Cs added to allophanic andosols in laboratory cultivations and extraction tests. J Environ Radioact 122:29–36

    Article  CAS  Google Scholar 

  • Teplyakov IG, Romanov GN, Spirin DA (1997) Returning of lands in East-Ural radioactive trace to farming use. Rad Saf Quest 3:33–41

    Google Scholar 

  • Volobuev PV, Chukanov VN, Shtinov AA, Alexeenko NN (2000) East-Urals radioactive track. Problems of rehabilitation of population and territory of Sverdlovsk region. Publisher of UrB RAS, Yekaterinburg

    Google Scholar 

  • Voronina AV, Semenishchev VS, Savchenko MO, Bykov AA, Kutergin AS, Nedobuh TA (2013) Approaches to rehabilitation of radioactive contaminated territories. J Chem Technol Biotechnol 88:1606–1611

    Article  CAS  Google Scholar 

  • Voronina AV, Blinova MO, Semenishchev VS, Gupta DK (2015) Returning land contaminated as a result of radiation accidents to farming use. J Environ Radioact 144:103–112

    Article  CAS  Google Scholar 

  • Vozzhenikov GS, Alexandrova ZN, Vozzhenikov EG (1997) The method for soils deactivation. Russian Federation Patent № 2077749

    Google Scholar 

  • Warner F, Harrison RM (1993) Radioecology after Chernobyl–biogeochemical pathways of artificial radionuclides. SCOPE 50. Wiley, Chichester

    Google Scholar 

  • Yamaguchi N, Eguchi S, Fujiwara H, Hayashi K, Tsukada H (2012) Radiocesium and radioiodine in soil particles agitated by agricultural particles: field observation after the Fukushima nuclear accident. Sci Total Environ 425:128–134

    Article  CAS  Google Scholar 

  • Yudintseva EV, Gulyakin IV (1968) Agrochemistry of radioactive isotopes of caesium and strontium. Atomizdat, Moscow

    Google Scholar 

  • Zolotov YA (1999) Basis of analytical chemistry. Part I. Common questions, separation methods. High School, Moscow

    Google Scholar 

  • Zubets MV, Prister BS, Alexakhin RM, Bogdevich IM, Kashparov VA (2011) Urgent problems and tasks of scientific support of farming in radioactively contaminated zone of Chernobyl NPP. Agroecol J 1:5–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voronina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Voronina, A.V., Semenishchev, V.S., Blinova, M.O., Sanin, P.J. (2015). Methods for Decrease of Radionuclides Transfer from Soil to Agricultural Vegetation. In: Walther, C., Gupta, D. (eds) Radionuclides in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-22171-7_11

Download citation

Publish with us

Policies and ethics