Skip to main content

Biotransformation of Radionuclides: Trends and Challenges

  • Chapter
Radionuclides in the Environment

Abstract

Radioactive contamination poses risks to environment and human health. The microbial-mediated transformation presents opportunity for the remediation of radionuclide contamination of the environment by immobilizing them or accelerating their removal. This chapter aims to interpret the mechanisms by which microbes interact with their surroundings to eliminate radionuclides of concern from the environment and how they influence the behavior and transport of radionuclides. Recent advances in microbial ecology have provided molecular strategies for the modeling of microbial process in order to increase the effectiveness and reliability of bioremediation and natural attenuation of polluted sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amachi S (2008) Microbial contribution to global iodine cycling: volatilization, accumulation, reduction, oxidation and sorption of iodine. Microbes Environ 23:269–276

    Article  Google Scholar 

  • Amachi S, Fuji T, Shinoyama H, Muramatsu Y (2005) Microbial influences on the mobility and transformation of radioactive iodine in the environment. J Nucl Radiochem Sci 6:21–24

    Article  CAS  Google Scholar 

  • Anderson RT, Lovley DR (2002) Microbial redox interactions with uranium: an environmental perspective. In: Keith-Roach MJ, Francis RL (eds) Interactions of microorganisms with radionuclides. Elsevier, Amsterdam

    Google Scholar 

  • Anderson S, Appanna V (1994) Microbial formation of crystalline strontium carbonate. FEMS Microbiol Lett 116:43–48

    Article  CAS  Google Scholar 

  • Beyenal H, Sani RK, Peyton BM, Dohnalkova AC, Amonette JE, Lewandowski Z (2004) Uranium immobilization by sulfate-reducing biofilms. Environ Sci Technol 38:2067–2074

    Article  CAS  Google Scholar 

  • Bors J, Martens R (1992) The contribution of microbial biomass to the adsorption of radioiodine in soils. J Environ Radioact 15:35–49

    Article  CAS  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    Article  CAS  Google Scholar 

  • Brookshaw DR, Pattrick RAD, Lloyd JR, Vaughan DJ (2012) Microbial effects on mineral–radionuclide interactions and radionuclide solid-phase capture processes. Mineral Mag 76:777–806

    Article  CAS  Google Scholar 

  • Cao B, Ahmed B, Beyenal H (2010) Immobilization of uranium in ground water using biofilms. In: Shah V (ed) Emerging environmental technologies, vol 2. Springer, Berlin

    Google Scholar 

  • Cao B, Ahmed B, Kennedy DW, Wang Z, Shi L, Marshall MJ, Fredrickson JK, Isern NG, Majors PD, Beyenal H (2011) Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization. Environ Sci Technol 45:5483–5490

    Article  CAS  Google Scholar 

  • Councell T, Landa E, Lovely D (1997) Microbial reduction of iodate. Water Air Soil Pollut 100:99–106

    Article  CAS  Google Scholar 

  • Deo RP, Rittmann BE, Reed DT (2011) Bacterial Pu(V) reduction in the absence and presence of Fe(III)-NTA: modeling and experimental approach. Biodegradation 22:921–929

    Article  CAS  Google Scholar 

  • Dighton J, Horrill AD (1998) Radiocaesium accumulation in the mycorrhizal fungi Lactarius rufus and Inocybe longicystis in upland Britain. Trans Br Mycol Soc 91:335–337

    Article  Google Scholar 

  • Dixit R, Wasiullah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  Google Scholar 

  • Finneran KT, Anderson RT, Nevin KP, Lovley DR (2002) Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sedim Contam 11:339–357

    Article  CAS  Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Liu CX, Duff MC, Hunter DB, Dehnalkova A (2002) Influence of Mn Oxides on the reduction of Uranium (VI) by the metal reducing bacterium Shewanella putrefaciens. Geochim Cosmochim Acta 66:3247–3262

    Article  CAS  Google Scholar 

  • Francis AJ (2002) Microbial transformation of uranium complexed with organic and inorganic ligands. In: Merkel BJ, Planer-Friedrich B, Wolkerdorfer C (eds) Uranium in the aquatic environment. Springer, Berlin

    Google Scholar 

  • Francis AJ (2007) Microbial transformation of radionuclides released from nuclear fuel reprocessing plants. Brookhaven National Laboratory, BNL-79721-2007-CP

    Google Scholar 

  • Francis AJ (2012) Impact of microorganism on radionuclides in contaminated environments and waste materials. In: Merkel BJ (ed) Radionuclide behavior in the natural environment. Woodhead Publishing Limited, BNL-98706-2012-BC

    Google Scholar 

  • Francis AJ, Dodge CJ (2009) Microbial transformation of actinides and other radionuclides. Brookhaven National Laboratory, BNL-82098-2009-CP

    Google Scholar 

  • Francis AJ, Nancharaiah YV (2015) In situ and ex situ bioremediation of radionuclides contaminated soils at nuclear and NORM sites. In: Velzen VL (ed) Environmental remediation and restoration of contaminated nuclear and NORM sites. Elsevier, Amsterdam

    Google Scholar 

  • Francis AJ, Gillow JB, Dodge CJ, Harris R, Beveridge TJ, Papenguth HW (2004) Association of uranium with halophilic and nonhalophilic bacteria and archaea. Radiochim Acta 92:481–488

    Article  CAS  Google Scholar 

  • Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW (2000) Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiology J 17:305–318

    Article  CAS  Google Scholar 

  • Fujita Y, Redden GD, Ingram JC, Cortez MM, Ferris GF, Smith RW (2004) Strontium incorporation into calcite generated by bacterial ureolysis. Geochim Cosmochim Acta 68:3261–3270

    Article  CAS  Google Scholar 

  • Fujita Y, Taylor JL, Gresham TLT, Delwiche ME, Colwell FS, McLing TL, Petzke LM, Smith RW (2008) Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation. Environ Sci Technol 42:3025–3032

    Article  CAS  Google Scholar 

  • Fujita Y, Taylor JL, Wendt LM, Reed DW, Smith RW (2010) Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment. Environ Sci Technol 44:7652–7658

    Article  CAS  Google Scholar 

  • Fujita T, Wang LP, Yabui K, Dodbiba G, Okaya K, Matsuo S, Nomura K (2013) Adsorption of cesium ion on various clay minerals and remediation of cesium contaminated soil in Japan. Resour Process 60:13–17

    Article  Google Scholar 

  • Gadd GM (2002) Microbial interactions with metals/radionuclides: the basis of bioremediation. In: Keith-Roach MJ, Francis RL (eds) Interactions of microorganisms with radionuclides. Elsevier, Oxford

    Google Scholar 

  • Geissler A, Pobell SS, Morris K, Burke IT, Livens FR, Lloyd J (2010) The microbial ecology of land and water contaminated with radioactive waste: towards the development of bioremediation options for the nuclear industry. In: Batty LC, Hallberg KB (eds) Ecology of industrial pollution. Cambridge University Press, Cambridge

    Google Scholar 

  • Ginder-Vogel M, Criddle CS, Fendorf S (2006) Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (hydr)oxides. Environ Sci Technol 40:3544–3550

    Article  CAS  Google Scholar 

  • Handley-Sidhu S, Renshaw JC, Moriyama S, Stolpe B, Mennan C, Bagheriasl S, Yong P, Stamboulis A, Paterson-Beedle M, Sasaki K, Pattrick RAD, Lead JR, Macaskie LE (2011a) Uptake of Sr2+ and Co2+ into biogenic hydroxyapatite: implications for biomineral ion exchange synthesis. Environ Sci Technol 45:6985–6990

    Article  CAS  Google Scholar 

  • Handley-Sidhu S, Renshaw JC, Yong P, Kerley R, Macaskie LE (2011b) Nanocrystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions. Biotechnol Lett 33:79–87

    Article  CAS  Google Scholar 

  • Hazen TC, Tabak HH (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides: 2. Field research on bioremediation of metals and radionuclides. Rev Environ Sci Biotechnol 4:157–183

    Article  CAS  Google Scholar 

  • Hu Q, Zhao P, Moran JE, Seaman JC (2005) Sorption and transport of iodine species in sediments from the Savannah River and Hanford sites. J Contam Hydrol 78:185–205

    Article  CAS  Google Scholar 

  • Icopini GA, Boukhalfa H, Neu MP (2007) Biological reduction of Np(V) and Np(V) citrate by metal reducing bacteria. Environ Sci Technol 41:2764–2769

    Article  CAS  Google Scholar 

  • Istok JD, Senko JM, Krumholz LR (2004) In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environ Sci Technol 38:468–475

    Article  CAS  Google Scholar 

  • Jabbar T, Wallner G, Steier P (2013) A review on 129I analysis in air. J Environ Radioact 126:45–54

    Article  CAS  Google Scholar 

  • Kazy SK, D’Souza SF, Sar P (2009) Uranium and thorium sequestration by a Pseudomonas sp.: mechanism and chemical characterization. J Hazard Mater 163:65–72

    Article  CAS  Google Scholar 

  • Kennedy CB, Gault AG, Fortin D, Clark ID, Ferris FG (2011) Retention of iodide by bacteriogenic iron oxides. Geomicrobiology J 28:387–395

    Article  CAS  Google Scholar 

  • Krejci MR, Wasserman B, Finney L, McNulty I, Legnini D, Vogt S, Joester D (2011) Selectivity in biomineralization of barium and strontium. J Struct Biol 176:192–202

    Article  CAS  Google Scholar 

  • Kulkarni S, Ballal A, Apte SK (2013) Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J Hazard Mat 15:853–861

    Article  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (2000) Biological reduction and removal of Np(V) by two microorganisms. Environ Sci Technol 34:1297–1301

    Article  CAS  Google Scholar 

  • Lloyd JR, Chesnes J, Glasauer S, Bunker DJ, Livens FR, Lovley DR (2002) Reduction of actinides and fission products by Fe(III) reducing bacteria. Geomicro J 19:103–120

    Article  CAS  Google Scholar 

  • Lloyd JR, Renshaw JC, May I, Livens FR, Burke IT, Mortimerc RJG, Morris K (2005) Biotransformation of radioactive waste: microbial reduction of actinides and fission products. J Nucl Radiochem Sci 6:17–20

    Article  CAS  Google Scholar 

  • Loughlin EJ, Boyanov MI, Antonopoulos DA, Kemmer KM (2011) Redox processes affecting the speciation of technetium, uranium, neptunium and plutonium in aquatic and terrestrial environments. In: Aquatic redox chemistry, ACS symposium series, American Chemical Society, Washington

    Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. In: Poole RK (ed) Advances in microbial physiology, vol 49. Elsevier, London

    Google Scholar 

  • Luo W, Gu B (2011) Dissolution of uranium-bearing minerals and mobilization of uranium organic ligands in a biologically reduced sediment. Environ Sci Technol 45:2994–2999

    Article  CAS  Google Scholar 

  • Luo WS, Wu WM, Yan TF, Criddle CS, Jardine PM, Zhou JZ, Gu BH (2007) Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition. Appl Microbiol Biotechnol 77:713–721

    Article  CAS  Google Scholar 

  • Macaskie LE, Empson RM, Cheetham AK, Grey CP, Skarnulis AJ (1992) Uranium bioaccumulation by citrobacter sp. As a result of enzymatically-mediated growth of polycrystalline HUO2PO4. Science 257:782–784

    Article  CAS  Google Scholar 

  • Marshall MJ, Beliaev AS, Fredrickson JK (2010) Microbial transformations of radionuclides in the subsurface. In: Mitchell R, Gu DJ (eds) Environmental microbiology, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Marsili E, Beyenal H, Palma L, Merli C, Dohnalkova A, Amonette J, Lewandowski Z (2007) Uranium immobilization by sulfate-reducing biofilms grown on hematite, dolomite, and calcite. Environ Sci Technol 41:8349–8354

    Article  CAS  Google Scholar 

  • McCullough J, Hazen T, Sally B (1999) Bioremediation of metals and radionuclides: what it is and how it works. Lawrence Berkeley National Laboratory, LBNL-42595

    Google Scholar 

  • Merroun ML, Pobell SS (2008) Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285–295

    Article  CAS  Google Scholar 

  • Mohapatra BR, Dinardo O, Gould WD, Koren DW (2010) Biochemical and genomic facets on the dissimilatory reduction of radionuclides by microorganisms—a review. Miner Eng 23:591–599

    Article  CAS  Google Scholar 

  • Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    Article  CAS  Google Scholar 

  • Nielsen LP, Risgaard-Petersen N, Fossing H, Christensen PB, Sayama M (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463:1071–1074

    Article  CAS  Google Scholar 

  • Nilgiriwala KS, Alahari A, Rao AS, Apte SK (2008) Cloning and overexpression of alkaline phosphatase PhoK from Sphingomonas sp. strain BSAR-1 for bioprecipitation of uranium from alkaline solutions. Appl Environ Microbiol 74:5516–5523

    Article  CAS  Google Scholar 

  • Ohnuki T, Aoyagi H, Kitatsuji Y, Samadfam M, Kimura Y, Purvis OW (2004) Plutonium(VI) accumulation and reduction by lichen biomass: correlation with U(VI). J Environ Radioact 77:339–35

    Article  CAS  Google Scholar 

  • Pedersen K (2005) Microorganisms and their influence on radionuclides migration in igneous rock environments. J Nucl Radiochem Sci 6:11–15

    Article  CAS  Google Scholar 

  • Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, Kjeldsen KU, Schreiber L, Gorby YA, El-Naggar MY, Leung KM, Schramm A, Risgaard-Petersen N, Nielsen LP (2012) Filamentous bacteria transport electrons over centimetre distances. Nature 491:218–221

    Article  CAS  Google Scholar 

  • Plymale AE, Fredrickson JK, Zachara JM, Dohnalkova AC, Heald SM, Moore DA, Kennedy DW, Marshall MJ, Wang CM, Resch CT, Nachimuthu P (2011) Competitive reduction of pertechnetate ((TcO4 −)-Tc-99) by dissimilatory metal reducing bacteria and biogenic Fe(II). Environ Sci Technol 45:951–957

    Article  CAS  Google Scholar 

  • Prakash D, Gabani P, Chandel AK, Ronen Z, Singh OV (2013) Bioremediation: a genuine technology to remediate radionuclides from the environment. Microb Biotechnol 6:349–360

    Article  Google Scholar 

  • Reed DT, Pepper SE, Richmann MK, Smith G, Deo R, Rittmann BE (2007) Subsurface bio-mediated reduction of higher-valent uranium and plutonium. J Alloys Compd 444–445:376–382

    Article  Google Scholar 

  • Renshaw JC, Lloyd JR, Livens FR (2007) Microbial interactions with actinides and long-lived fission products. Comp Rendus Chimi 10:1067–1077

    Article  CAS  Google Scholar 

  • Rittmann B, Banaszak J, Reed D (2002) Reduction of Np(V) and precipitation of Np(IV) by anaerobic microbial consortium. Biodegradation 13:329–342

    Article  CAS  Google Scholar 

  • Rui KMJ, Loughlin EJ, Cheatham SD, Fein JB, Bunker B, Kemner KM, Boyanov MI (2013) Bioreduction of hydrogen uranyl phosphate: mechanism and U(IV) products. Environ Sci Technol 47:5668–5678

    Article  CAS  Google Scholar 

  • Sani RK, Peyton BM, Dohnalkova A, Amonette JE (2005) Reoxidation of reduced uranium with iron(III) (hydr)oxides under sulfate-reducing conditions. Environ Sci Technol 39:2059–2066

    Article  CAS  Google Scholar 

  • Sasaki H, Shirato S, Tahara T, Sato K, Takenaka H (2013) Accumulation of radioactive cesium released from Fukushima Daiichi nuclear power plant in terrestrial cyanobacteria Nostoc commune. Microbes Environ 28:466–469

    Article  Google Scholar 

  • Shelobolina ES, Coppi MV, Korenevsky AA (2007) Importance of c-type cytochromes for U(VI) reduction by Geobacter sulfurreducens. BMC Microbiol 7:16

    Article  Google Scholar 

  • Shimura H, Itoh K, Sugiyama A, Ichijo S, Ichijo M, Furuya F, Nakamura Y, Kitahara K, Kobayashi K, Yukawa Y, Kobayashi T (2012) Absorption of radionuclides from the Fukushima nuclear accident by a novel algal strain. PLoS One 7, e44200

    Article  CAS  Google Scholar 

  • Spycher NF, Issarangkun M, Stewart BD, Sevinç Åžengör S, Belding E, Ginn TR, Peyton BM, Sani RK (2011) Biogenic uraninite precipitation and its reoxidation by iron(III) (hydr)oxides: a reaction modeling approach. Geochim Cosmochim Acta 75:4426–4440

    Article  CAS  Google Scholar 

  • Thorpe CL, Lloyd JR, Law GTW, Burke IT, Shaw S, Bryan ND, Morris K (2012) Strontium sorption and precipitation behavior during bioreduction of nitrate impacted sediments. Chem Geol 306–307:114–122

    Article  Google Scholar 

  • Tomioka N, Uchiyama H, Yagi O (1992) Isolation and characterization of cesium accumulating bacteria. Appl Environ Microbiol 58:1019–1023

    CAS  Google Scholar 

  • Tomioka N, Uchiyama H, Yagi O (1994) Cesium accumulation and growth characteristics of Rhodococcus erythropolis CS98 and Rhodococcus sp. Strain CS402. Appl Environ Microbiol 60:2227–2231

    CAS  Google Scholar 

  • Wan J, Tokunaga TK, Brodie E, Wang Z, Zheng Z, Herman D, Hazen TC, Firestone MK, Sutton SR (2005) Reoxidation of bioreduced uranium under reducing conditions. Environ Sci Technol 39:6162–6169

    Article  CAS  Google Scholar 

  • Wan J, Tokunaga TK, Kim Y, Brodie E, Daly R, Hazen TC, Firestone MK (2008) Effects of organic carbon supply rates on uranium mobility in a previously bioreduced contaminated sediment. Environ Sci Technol 42:7573–7579

    Article  CAS  Google Scholar 

  • Wang ZM, Lee SWW, Kapoor P, Tebo BM, Giammar DE (2013) Uraninite oxidation and dissolution induced by manganese oxide: a redox reaction between two insoluble minerals. Geochim Cosmochim Acta 100:24–40

    Article  CAS  Google Scholar 

  • Wilkins MJ, Livens FR, Vaughan DJ, Beadle I, Lloyd JR (2007) The influence of microbial redox cycling on radionuclide mobility in the subsurface at a low-level radioactive waste storage site. Geobiology 5:293–301

    Article  CAS  Google Scholar 

  • Wu Y, Ajo-Franklin JB, Spycher N, Hubbard SS, Zhang G, Williams KH, Taylor J, Fujita Y, Smith R (2011) Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation. Geochem Trans 12:7–26

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Jabbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jabbar, T., Wallner, G. (2015). Biotransformation of Radionuclides: Trends and Challenges. In: Walther, C., Gupta, D. (eds) Radionuclides in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-22171-7_10

Download citation

Publish with us

Policies and ethics