Skip to main content

Neurobehavioral Comorbidities of Epilepsy: Lessons from Animal Models

  • Chapter
Neuropsychiatric Symptoms of Epilepsy

Part of the book series: Neuropsychiatric Symptoms of Neurological Disease ((NSND))

  • 1470 Accesses

Abstract

Animal models can afford useful insights into the mechanisms of neurobehavioral comorbidities of epilepsy. However, clinical relevance and value of the information that can be extracted from animal studies depend on many factors, including choice of proper models of epilepsy, choice of proper behavioral tasks, and accounting for the presence of multiple concurrent neurobehavioral disorders in the same epileptic animal. This chapter offers an overview of approaches used to examine selected neurobehavioral comorbidities in animal models of epilepsy. Assays used to study spatial and object memory, depression, anxiety, attention deficit/hyperactivity disorder, psychosis, and autism are described. First, the approaches are presented from a standpoint of single comorbidity, and mechanisms underlying respective epilepsy-associated neurobehavioral abnormalities are discussed. Further, examples are given as to how concurrent neurobehavioral perturbations may influence one another, and therefore how this may affect outcome measures and interpretation of the obtained data. It is suggested that systemic approach, rather than more commonly used isolated approach, offers more clinical-relevant and complete description of multifactorial systems that underlie neurobehavioral comorbidities of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumans V. Science-based assessment of animal welfare: laboratory animals. Rev Sci Tech. 2005;24(2):503–13.

    CAS  PubMed  Google Scholar 

  2. Scholz S, Sela E, Blaha L, Braunbeck T, Galay-Burgos M, Garcia-Franco M, et al. A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regul Toxicol Pharmacol. 2013;67(3):506–30.

    Article  PubMed  Google Scholar 

  3. van der Staay FJ, Arndt SS, Nordquist RE. Evaluation of animal models of neurobehavioral disorders. Behav Brain Funct. 2009;5:11.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Jentsch JD. Genetic vasopressin deficiency facilitates performance of a lateralized reaction-time task: altered attention and motor processes. J Neurosci. 2003;23(3):1066–71.

    CAS  PubMed  Google Scholar 

  5. Jentsch JD. Impaired visuospatial divided attention in the spontaneously hypertensive rat. Behav Brain Res. 2005;157(2):323–30.

    Article  PubMed  Google Scholar 

  6. D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev. 2001;36(1):60–90.

    Article  PubMed  Google Scholar 

  7. Brandeis R, Brandys Y, Yehuda S. The use of the Morris Water Maze in the study of memory and learning. Int J Neurosci. 1989;48(1–2):29–69.

    Article  CAS  PubMed  Google Scholar 

  8. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  9. Bures J, Fenton AA, Kaminsky Y, Zinyuk L. Place cells and place navigation. Proc Natl Acad Sci U S A. 1997;94(1):343–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Fenton AA, Kao HY, Neymotin SA, Olypher A, Vayntrub Y, Lytton WW, et al. Unmasking the CA1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. J Neurosci. 2008;28(44):11250–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. O’Keefe J, Nadel L. The hippocampus as a cognitive map. London: Oxford University Press; 1978. 584 p.

    Google Scholar 

  12. Dragoi G, Tonegawa S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature. 2011;469(7330):397–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Derdikman D, Moser MB. A dual role for hippocampal replay. Neuron. 2010;65(5):582–4.

    Article  CAS  PubMed  Google Scholar 

  14. Cavalheiro EA, Naffah-Mazzacoratti MG, Mello LE, Leite JP. The pilocarpine model of seizures. In: Pitkanen A, Schwartzkroin PA, Moshe SL, editors. Models of seizures and epilepsy. Amsterdam et al.: Elsevier; 2006. p. 433–48.

    Chapter  Google Scholar 

  15. Dudek FE, Hellier JL, Williams PA, Ferraro DJ, Staley KJ. The course of cellular alterations associated with the development of spontaneous seizures after status epilepticus. Prog Brain Res. 2002;135:53–65.

    Article  PubMed  Google Scholar 

  16. Coulter DA, McIntyre DC, Loscher W. Animal models of limbic epilepsies: what can they tell us? Brain Pathol. 2002;12(2):240–56.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Detour J, Schroeder H, Desor D, Nehlig A. A 5-month period of epilepsy impairs spatial memory, decreases anxiety, but spares object recognition in the lithium-pilocarpine model in adult rats. Epilepsia. 2005;46(4):499–508.

    Article  PubMed  Google Scholar 

  18. Liu X, Muller RU, Huang LT, Kubie JL, Rotenberg A, Rivard B, et al. Seizure-induced changes in place cell physiology: relationship to spatial memory. J Neurosci. 2003;23(37):11505–15.

    CAS  PubMed  Google Scholar 

  19. Titiz AS, Mahoney JM, Testorf ME, Holmes GL, Scott RC. Cognitive impairment in temporal lobe epilepsy: role of online and offline processing of single cell information. Hippocampus. 2014;24(9):1129–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Karnam HB, Zhou JL, Huang LT, Zhao Q, Shatskikh T, Holmes GL. Early life seizures cause long-standing impairment of the hippocampal map. Exp Neurol. 2009;217(2):378–87.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Zhou JL, Shatskikh TN, Liu X, Holmes GL. Impaired single cell firing and long-term potentiation parallels memory impairment following recurrent seizures. Eur J Neurosci. 2007;25(12):3667–77.

    Article  PubMed  Google Scholar 

  22. Dube CM, Zhou JL, Hamamura M, Zhao Q, Ring A, Abrahams J, et al. Cognitive dysfunction after experimental febrile seizures. Exp Neurol. 2009;215(1):167–77.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res. 1988;31(1):47–59.

    Article  CAS  PubMed  Google Scholar 

  24. Barker GR, Bird F, Alexander V, Warburton EC. Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci. 2007;27(11):2948–57.

    Article  CAS  PubMed  Google Scholar 

  25. Aggleton JP, Keen S, Warburton EC, Bussey TJ. Extensive cytotoxic lesions involving both the rhinal cortices and area TE impair recognition but spare spatial alternation in the rat. Brain Res Bull. 1997;43(3):279–87.

    Article  CAS  PubMed  Google Scholar 

  26. Hammond RS, Tull LE, Stackman RW. On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem. 2004;82(1):26–34.

    Article  PubMed  Google Scholar 

  27. Brewster AL, Lugo JN, Patil VV, Lee WL, Qian Y, Vanegas F, et al. Rapamycin reverses status epilepticus-induced memory deficits and dendritic damage. PLoS One. 2013;8(3):e57808.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zhou FW, Rani A, Martinez-Diaz H, Foster TC, Roper SN. Altered behavior in experimental cortical dysplasia. Epilepsia. 2011;52(12):2293–303.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Aniol VA, Ivanova-Dyatlova AY, Keren O, Guekht AB, Sarne Y, Gulyaeva NV. A single pentylenetetrazole-induced clonic-tonic seizure episode is accompanied by a slowly developing cognitive decline in rats. Epilepsy Behav. 2013;26(2):196–202.

    Article  PubMed  Google Scholar 

  30. Cornejo BJ, Mesches MH, Benke TA. A single early-life seizure impairs short-term memory but does not alter spatial learning, recognition memory, or anxiety. Epilepsy Behav. 2008;13(4):585–92.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl). 2005;177(3):245–55.

    Article  CAS  Google Scholar 

  32. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266(5604):730–2.

    Article  CAS  PubMed  Google Scholar 

  33. Overstreet DH, Wegener G. The flinders sensitive line rat model of depression – 25 years and still producing. Pharmacol Rev. 2013;65(1):143–55.

    Article  CAS  PubMed  Google Scholar 

  34. Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF, et al. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron. 2010;65(1):40–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev. 2005;29(4–5):627–47.

    Article  PubMed  Google Scholar 

  36. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl). 1997;134(4):319–29.

    Article  CAS  Google Scholar 

  37. Dantzer R. Cytokine, sickness behavior, and depression. Immunol Allergy Clin North Am. 2009;29(2):247–64.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Mazarati AM, Pineda E, Shin D, Tio D, Taylor AN, Sankar R. Comorbidity between epilepsy and depression: role of hippocampal interleukin-1beta. Neurobiol Dis. 2010;37(2):461–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29(4–5):571–625.

    Article  CAS  PubMed  Google Scholar 

  40. Willner P, Mitchell PJ. The validity of animal models of predisposition to depression. Behav Pharmacol. 2002;13(3):169–88.

    Article  CAS  PubMed  Google Scholar 

  41. Albert PR, Vahid-Ansari F, Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front Behav Neurosci. 2014;8:199.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Hensler JG. Serotonergic modulation of the limbic system. Neurosci Biobehav Rev. 2006;30(2):203–14.

    Article  CAS  PubMed  Google Scholar 

  43. Aghajanian GK, Sprouse JS, Sheldon P, Rasmussen K. Electrophysiology of the central serotonin system: receptor subtypes and transducer mechanisms. Ann N Y Acad Sci. 1990;600:93–103; discussion.

    Article  CAS  PubMed  Google Scholar 

  44. Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, et al. Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol. 2000;417(2):181–94.

    Article  CAS  PubMed  Google Scholar 

  45. Sprouse JS, Aghajanian GK. Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse. 1987;1(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  46. Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim SY, et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature. 2012;492(7429):428–32.

    CAS  PubMed  Google Scholar 

  47. Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 1997;20(2):78–84.

    Article  CAS  PubMed  Google Scholar 

  48. Yu S, Holsboer F, Almeida OF. Neuronal actions of glucocorticoids: focus on depression. J Steroid Biochem Mol Biol. 2008;108(3–5):300–9.

    Article  CAS  PubMed  Google Scholar 

  49. Judge SJ, Ingram CD, Gartside SE. Moderate differences in circulating corticosterone alter receptor-mediated regulation of 5-hydroxytryptamine neuronal activity. J Psychopharmacol. 2004;18(4):475–83.

    Article  CAS  PubMed  Google Scholar 

  50. Chaouloff F. Serotonin, stress and corticoids. J Psychopharmacol. 2000;14(2):139–51.

    Article  CAS  PubMed  Google Scholar 

  51. Watson S, Gallagher P, Smith MS, Ferrier IN, Young AH. The DEX/CRH test-is it better than the DST? Psychoneuroendocrinology. 2006;31(7):889–94.

    Article  CAS  PubMed  Google Scholar 

  52. Mazarati A, Siddarth P, Baldwin RA, Shin D, Caplan R, Sankar R. Depression after status epilepticus: behavioural and biochemical deficits and effects of fluoxetine. Brain. 2008;131(Pt 8):2071–83.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Mazarati A, Shin D, Auvin S, Caplan R, Sankar R. Kindling epileptogenesis in immature rats leads to persistent depressive behavior. Epilepsy Behav. 2007;10(3):377–83.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Mazarati AM, Shin D, Kwon YS, Bragin A, Pineda E, Tio D, et al. Elevated plasma corticosterone level and depressive behavior in experimental temporal lobe epilepsy. Neurobiol Dis. 2009;34(3):457–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Sarkisova K, van Luijtelaar G. The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression [corrected]. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(4):854–76.

    Article  CAS  PubMed  Google Scholar 

  56. Shaw FZ, Chuang SH, Shieh KR, Wang YJ. Depression- and anxiety-like behaviors of a rat model with absence epileptic discharges. Neuroscience. 2009;160(2):382–93.

    Article  CAS  PubMed  Google Scholar 

  57. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Maroso M, Balosso S, Ravizza T, Liu J, Bianchi ME, Vezzani A. Interleukin-1 type 1 receptor/toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J Intern Med. 2011;270(4):319–26.

    Article  CAS  PubMed  Google Scholar 

  59. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci. 2003;23(25):8692–700.

    CAS  PubMed  Google Scholar 

  60. Krishnadas R, Cavanagh J. Depression: an inflammatory illness? J Neurol Neurosurg Psychiatr. 2012;83(5):495–502.

    Article  PubMed  Google Scholar 

  61. Bruce TO. Comorbid depression in rheumatoid arthritis: pathophysiology and clinical implications. Curr Psychiatr Rep. 2008;10(3):258–64.

    Article  Google Scholar 

  62. Dantzer R, Kelley KW. Stress and immunity: an integrated view of relationships between the brain and the immune system. Life Sci. 1989;44(26):1995–2008.

    Article  CAS  PubMed  Google Scholar 

  63. Pineda EA, Hensler JG, Sankar R, Shin D, Burke TF, Mazarati AM. Interleukin-1beta causes fluoxetine resistance in an animal model of epilepsy-associated depression. Neurotherapeutics J Am Soc Exp Neurotherap. 2012;9(2):477–85.

    Article  CAS  Google Scholar 

  64. Groticke I, Hoffmann K, Loscher W. Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Exp Neurol. 2007;207(2):329–49.

    Article  PubMed  CAS  Google Scholar 

  65. Muller CJ, Groticke I, Bankstahl M, Loscher W. Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice. Exp Neurol. 2009;219(1):284–97.

    Article  PubMed  CAS  Google Scholar 

  66. Carobrez AP, Bertoglio LJ. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev. 2005;29(8):1193–205.

    Article  CAS  PubMed  Google Scholar 

  67. Pellow S, Chopin P, File SE, Briley M. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985;14(3):149–67.

    Article  CAS  PubMed  Google Scholar 

  68. Helfer V, Deransart C, Marescaux C, Depaulis A. Amygdala kindling in the rat: anxiogenic-like consequences. Neuroscience. 1996;73(4):971–8.

    Article  CAS  PubMed  Google Scholar 

  69. Powell KL, Tang H, Ng C, Guillemain I, Dieuset G, Dezsi G, et al. Seizure expression, behavior, and brain morphology differences in colonies of Genetic Absence Epilepsy Rats from Strasbourg. Epilepsia. 2014;55(12):1959–68.

    Article  PubMed  Google Scholar 

  70. Jones NC, Kumar G, O’Brien TJ, Morris MJ, Rees SM, Salzberg MR. Anxiolytic effects of rapid amygdala kindling, and the influence of early life experience in rats. Behav Brain Res. 2009;203(1):81–7.

    Article  PubMed  Google Scholar 

  71. Robbins TW. The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl). 2002;163(3–4):362–80.

    Article  CAS  Google Scholar 

  72. Russell VA. The nucleus accumbens motor-limbic interface of the spontaneously hypertensive rat as studied in vitro by the superfusion slice technique. Neurosci Biobehav Rev. 2000;24(1):133–6.

    Article  CAS  PubMed  Google Scholar 

  73. Aston-Jones G, Rajkowski J, Cohen J. Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatr. 1999;46(9):1309–20.

    Article  CAS  Google Scholar 

  74. Viggiano D, Vallone D, Ruocco LA, Sadile AG. Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder. Neurosci Biobehav Rev. 2003;27(7):683–9.

    Article  CAS  PubMed  Google Scholar 

  75. Reddy DS. Current pharmacotherapy of attention deficit hyperactivity disorder. Drugs Today. 2013;49(10):647–65.

    CAS  PubMed  Google Scholar 

  76. Pineda E, Jentsch JD, Shin D, Griesbach G, Sankar R, Mazarati A. Behavioral impairments in rats with chronic epilepsy suggest comorbidity between epilepsy and attention deficit/hyperactivity disorder. Epilepsy Behav. 2014;31:267–75.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Kleen JK, Sesque A, Wu EX, Miller FA, Hernan AE, Holmes GL, et al. Early-life seizures produce lasting alterations in the structure and function of the prefrontal cortex. Epilepsy Behav. 2011;22(2):214–9.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Hernan AE, Alexander A, Jenks KR, Barry J, Lenck-Santini PP, Isaeva E, et al. Focal epileptiform activity in the prefrontal cortex is associated with long-term attention and sociability deficits. Neurobiol Dis. 2014;63:25–34.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, et al. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatr. 2014;5:47.

    Google Scholar 

  80. Jones CA, Watson DJ, Fone KC. Animal models of schizophrenia. Br J Pharmacol. 2011;164(4):1162–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl). 2001;156(2–3):234–58.

    Article  CAS  Google Scholar 

  82. Swerdlow NR, Braff DL, Geyer MA. Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol. 2000;11(3–4):185–204.

    Article  CAS  PubMed  Google Scholar 

  83. Geyer MA, Swerdlow NR, Mansbach RS, Braff DL. Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Res Bull. 1990;25(3):485–98.

    Article  CAS  PubMed  Google Scholar 

  84. Bertram E. The relevance of kindling for human epilepsy. Epilepsia. 2007;48 Suppl 2:65–74.

    Article  PubMed  Google Scholar 

  85. Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73(1):1–60.

    Article  CAS  PubMed  Google Scholar 

  86. Sutula TP. Secondary epileptogenesis, kindling, and intractable epilepsy: a reappraisal from the perspective of neural plasticity. Int Rev Neurobiol. 2001;45:355–86.

    Article  CAS  PubMed  Google Scholar 

  87. Sutula TP, Ockuly J. Kindling, spontaneous seizures and the consequences of epilepsy: more than a model. In: Pitkanen A, Schwartzkroin PA, Moshe SL, editors. Models of seizures and epilepsy. Amsterdam et al.: Elsevier; 2006. p. 395–406.

    Chapter  Google Scholar 

  88. Ma J, Leung LS. Kindled seizure in the prefrontal cortex activated behavioral hyperactivity and increase in accumbens gamma oscillations through the hippocampus. Behav Brain Res. 2010;206(1):68–77.

    Article  PubMed  Google Scholar 

  89. Howland JG, Hannesson DK, Barnes SJ, Phillips AG. Kindling of basolateral amygdala but not ventral hippocampus or perirhinal cortex disrupts sensorimotor gating in rats. Behav Brain Res. 2007;177(1):30–6.

    Article  PubMed  Google Scholar 

  90. Ma J, Leung LS. Schizophrenia-like behavioral changes after partial hippocampal kindling. Brain Res. 2004;997(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  91. Koch M, Ebert U. Deficient sensorimotor gating following seizures in amygdala-kindled rats. Biol Psychiatry. 1998;44(4):290–7.

    Article  CAS  PubMed  Google Scholar 

  92. Labbate GP, da Silva AV, Barbosa-Silva RC. Effect of severe neonatal seizures on prepulse inhibition and hippocampal volume of rats tested in early adulthood. Neurosci Lett. 2014;568:62–6.

    Article  CAS  PubMed  Google Scholar 

  93. Jones NC, Martin S, Megatia I, Hakami T, Salzberg MR, Pinault D, et al. A genetic epilepsy rat model displays endophenotypes of psychosis. Neurobiol Dis. 2010;39(1):116–25.

    Article  PubMed  Google Scholar 

  94. Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 2004;3(5):287–302.

    Article  CAS  PubMed  Google Scholar 

  95. Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, et al. Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav. 2004;3(5):303–14.

    Article  CAS  PubMed  Google Scholar 

  96. Crawley JN. Chapter 9: Social behaviors. In: Craige CP, editor. What’s wrong with my mouse? Hoboken: Wiley Interscience; 2007. p. 206–24.

    Chapter  Google Scholar 

  97. Scattoni ML, Gandhy SU, Ricceri L, Crawley JN. Unusual repertoire of vocalizations in the BTBR T+tf/J mouse model of autism. PLoS One. 2008;3(8):e3067.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun. 2012;26(4):607–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav. 2008;7(2):152–63.

    Article  CAS  PubMed  Google Scholar 

  100. Meyza KZ, Defensor EB, Jensen AL, Corley MJ, Pearson BL, Pobbe RL, et al. The BTBR T+ tf/J mouse model for autism spectrum disorders-in search of biomarkers. Behav Brain Res. 2013;251:25–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Teng BL, Nonneman RJ, Agster KL, Nikolova VD, Davis TT, Riddick NV, et al. Prosocial effects of oxytocin in two mouse models of autism spectrum disorders. Neuropharmacology. 2013;72:187–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Bernardet M, Crusio WE. Fmr1 KO mice as a possible model of autistic features. Sci World J. 2006;6:1164–76.

    Article  CAS  Google Scholar 

  103. Wohr M, Roullet FI, Hung AY, Sheng M, Crawley JN. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior. PLoS One. 2011;6(6):e20631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Pobbe RL, Pearson BL, Defensor EB, Bolivar VJ, Young 3rd WS, Lee HJ, et al. Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors. Horm Behav. 2012;61(3):436–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Roullet FI, Lai JK, Foster JA. In utero exposure to valproic acid and autism – a current review of clinical and animal studies. Neurotoxicol Teratol. 2013;36:47–56.

    Article  CAS  PubMed  Google Scholar 

  106. Le Belle JE, Sperry J, Ngo A, Ghochani Y, Laks DR, Lopez-Aranda M, et al. Maternal inflammation contributes to brain overgrowth and autism-associated behaviors through altered redox signaling in stem and progenitor cells. Stem Cell Rep. 2014;3(5):725–34.

    Article  CAS  Google Scholar 

  107. Scheffer IE, Zhang YH, Jansen FE, Dibbens L. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? Brain Dev. 2009;31(5):394–400.

    Article  PubMed  Google Scholar 

  108. Li BM, Liu XR, Yi YH, Deng YH, Su T, Zou X, et al. Autism in Dravet syndrome: prevalence, features, and relationship to the clinical characteristics of epilepsy and mental retardation. Epilepsy Behav. 2011;21(3):291–5.

    Article  PubMed  Google Scholar 

  109. Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS, Potter GB, et al. Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature. 2012;489(7416):385–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Mohn JL, Alexander J, Pirone A, Palka CD, Lee SY, Mebane L, et al. Adenomatous polyposis coli protein deletion leads to cognitive and autism-like disabilities. Mol Psychiatry. 2014;19(10):1133–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Sherr EH. The ARX, story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. Curr Op Ped. 2003;15(6):567–71.

    Article  Google Scholar 

  112. Pineda E, Shin D, You SJ, Auvin S, Sankar R, Mazarati A. Maternal immune activation promotes hippocampal kindling epileptogenesis in mice. Ann Neurol. 2013;74(1):11–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27(40):10695–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Scantlebury MH, Galanopoulou AS, Chudomelova L, Raffo E, Betancourth D, Moshe SL. A model of symptomatic infantile spasms syndrome. Neurobiol Dis. 2010;37(3):604–12.

    Article  PubMed Central  PubMed  Google Scholar 

  115. Rosenblueth A, Wiener N. The role of models in science. Philos Sci. 1945;12(4):316–21.

    Article  Google Scholar 

  116. Dulay MF, Schefft BK, Fargo JD, Privitera MD, Yeh HS. Severity of depressive symptoms, hippocampal sclerosis, auditory memory, and side of seizure focus in temporal lobe epilepsy. Epilepsy Behav. 2004;5(4):522–31.

    Article  PubMed  Google Scholar 

  117. Helmstaedter C, Sonntag-Dillender M, Hoppe C, Elger CE. Depressed mood and memory impairment in temporal lobe epilepsy as a function of focus lateralization and localization. Epilepsy Behav. 2004;5(5):696–701.

    Article  PubMed  Google Scholar 

  118. Kanner AM, Barry JJ, Gilliam F, Hermann B, Meador KJ. Depressive and anxiety disorders in epilepsy: do they differ in their potential to worsen common antiepileptic drug-related adverse events? Epilepsia. 2012;53(6):1104–8.

    Article  PubMed  Google Scholar 

  119. McIntosh D, Kutcher S, Binder C, Levitt A, Fallu A, Rosenbluth M. Adult ADHD and comorbid depression: a consensus-derived diagnostic algorithm for ADHD. Neuropsychiatr Dis Treat. 2009;5:137–50.

    PubMed Central  PubMed  Google Scholar 

  120. Daviss WB. A review of co-morbid depression in pediatric ADHD: etiology, phenomenology, and treatment. J Child Adolesc Psychopharmacol. 2008;18(6):565–71.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Ms. Katherine Shin, Mr. Nathaniel Shin, and Mr. Don Shin for their creative assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Mazarati MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mazarati, A. (2016). Neurobehavioral Comorbidities of Epilepsy: Lessons from Animal Models. In: Mula, M. (eds) Neuropsychiatric Symptoms of Epilepsy. Neuropsychiatric Symptoms of Neurological Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-22159-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22159-5_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22158-8

  • Online ISBN: 978-3-319-22159-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics