Skip to main content

Abstract

MRI has been in widespread clinical use since the mid-1980s and its use continues to grow due in large part to the excellent soft-tissue image contrast MRI generates from its unique manipulation of atomic nuclei. MRI exposes the subject under study to a very strong static magnetic field, as well as radiofrequency (RF) fields and magnetic field gradients, to generate and detect the weak electromagnetic signals that can be sampled and processed to generate an image. This chapter presents the general patient safety considerations posed by MRI equipment and the MR image formation process. Particular emphasis is placed on those safety considerations specific to cardiac MRI exams, including imaging of patients with implanted cardiovascular devices. While a high record of MR patient safety has been achieved to date, continual vigilance is required to assure patient safety, especially with the introduction of newer MR hardware capabilities and increased prevalence of implantable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allan CL, Herrmann LL, Ebmeier KP. Transcranial magnetic stimulation in the management of mood disorders. Neuropsychobiology. 2011;64:163–9.

    Article  PubMed  Google Scholar 

  2. Archibold RC. Hospital details failures leading to M.R.I. fatality. 2001. New York Times, 22 August 2001.

    Google Scholar 

  3. ASTM. ASTM standards worldwide. 1996. www.astm.org. Accessed 18 May 2014.

  4. ASTM. Designation: F2503-13, standard practice for marking medical devices and other items for safety in the magnetic resonance environment. West Conshohocken: American Society for Testing and Materials International; 2013.

    Google Scholar 

  5. Athey TW. Current FDA guidance for MR patient exposure and considerations for the future. Ann N Y Acad Sci. 1992;649:242–57.

    Article  CAS  PubMed  Google Scholar 

  6. Athey TW. FDA regulation of the safety of MR devices: past, present and future. Magn Reson Imaging Clin N Am. 1998;6:791–800.

    CAS  PubMed  Google Scholar 

  7. Atkinson IC, Renteria L, Burd H, et al. Safety of human MRI at static fields above the FDA 8 T guideline: sodium imaging at 9.4 T does not affect vital signs or cognitive ability. J Magn Reson Imaging. 2007;26:1222–7.

    Article  PubMed  Google Scholar 

  8. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–7.

    Article  CAS  PubMed  Google Scholar 

  9. Bhandiwad AR, Cummings KW, Crowley M, et al. Cardiovascular magnetic resonance with an MR compatible pacemaker. J Cardiovasc Magn Reson. 2013;15:18–21.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Brinley Jr FJ. Excitation and conduction in nerve fibers. In: Mountcastle VB, editor. Medical physiology. 13th ed. Saint Louis: Mosby; 1974. p. 34–76.

    Google Scholar 

  11. Budinger TF. Nuclear magnetic resonance (NMR) in vivo studies: known thresholds for health effects. J Comput Assist Tomogr. 1981;5:800–11.

    Article  CAS  PubMed  Google Scholar 

  12. Cavin ID, Glover PM, Bowtell RW, et al. Thresholds for perceiving metallic taste at high magnetic field. J Magn Reson Imaging. 2007;26:1357–61.

    Article  PubMed  Google Scholar 

  13. Chronik BA, Rutt BK. Simple linear formulation for magnetostimulation specific to MRI gradient coils. Magn Reson Med. 2001;45:916–9.

    Article  CAS  PubMed  Google Scholar 

  14. de Vocht F, Kromhout H. Human MRI above the FDA 8 T guideline: can we conclude that it is safe? J Magn Reson Imaging. 2008;27:938–9, author reply 939.

    Article  PubMed  Google Scholar 

  15. Edwards MJ, Talelli P, Rothwell JC. Clinical applications of transcranial magnetic stimulation in patients with movement disorders. Lancet Neurol. 2008;7:827–40.

    Article  PubMed  Google Scholar 

  16. EUR-Lex. Document 02004L0040-20081211. 2004. http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:02004L0040-20081211. Accessed 29 May 2014.

  17. EUR-Lex. Document 32013L0035. 2013. http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32013L0035. Accessed 15 May 2014.

  18. FDA. A primer on medical device interactions with magnetic resonance imaging systems. U.S. Food and Drug Administration, Center for Devices and Radiological Health Web site. 1997. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm107721.htm.

  19. FDA. Guidance for industry and FDA staff: criteria for significant risk investigations of magnetic resonance diagnostic devices. 2003. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM072688.pdf. Accessed 16 May 2014.

  20. FDA. Guidance for industry and FDA staff: establishing safety and compatibility of passive implants in the magnetic resonance (MR) environment. Published August 21, 2008. 2008. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM107708.pdf. Accessed 18 May 2014.

  21. FDA. Public health advisory: risk of burns during MRI scans from transdermal drug patches with metallic backings. 2009. http://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/drugsafetyinformationforheathcareprofessionals/publichealthadvisories/ucm111313.htm. Accessed 19 June 2014.

  22. Feldman RE, Hardy CJ, Aksel B, et al. Experimental determination of human peripheral nerve stimulation thresholds in a 3-axis planar gradient system. Magn Reson Med. 2009;62:763–70.

    Article  PubMed  Google Scholar 

  23. Fiechter F, Stehli J, Fuchs TA, et al. Impact of cardiac magnetic resonance imaging on human lymphocyte DNA integrity. Eur Heart J. 2013;34:2340–5. doi:10.1093/eurheartj/eht184.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Fuchs VR, Sox Jr HC. Physicians’ views of the relative importance of thirty medical innovations. Health Aff (Millwood). 2001;20:30–42.

    Article  CAS  Google Scholar 

  25. Gangarosa RE, Minnis JE, Nobbe J, et al. Operational safety issues in MRI. Magn Reson Imaging. 1987;5:287–92.

    Article  CAS  PubMed  Google Scholar 

  26. Geddes LA, Baker LE. Principles of applied biomedical instrumentation. 3rd ed. New York: Wiley; 1989.

    Google Scholar 

  27. Gethins M. Cautious optimism for proposed European MRI exposure limit exemption. J Natl Cancer Inst. 2011;103:1495–7.

    Article  PubMed  Google Scholar 

  28. Gill A, Shellock FG. Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips. J Cardiovasc Magn Reson. 2012;14:3–9.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Gimbel JR, Johnson D, Levine PA, et al. Safe performance of magnetic resonance imaging on five patients with permanent cardiac pacemakers. Pacing Clin Electrophysiol. 1996;19:913–9.

    Article  CAS  PubMed  Google Scholar 

  30. Heilmaier C, Theysohn JM, Maderwald S, et al. A large-scale study on subjective perception of discomfort during 7 and 1.5 T MRI examinations. Bioelectromagnetics. 2011;32:610–9.

    Article  PubMed  Google Scholar 

  31. Hill DL, McLeish K, Keevil SF. Impact of electromagnetic field exposure limits in Europe: is the future of interventional MRI safe? Acad Radiol. 2005;12:1135–42.

    Article  PubMed  Google Scholar 

  32. Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation task force on expert consensus documents. Circulation. 2010;121:2462–508.

    Article  PubMed  Google Scholar 

  33. ICNIRP. Guidelines on limits of exposure to static magnetic fields. Health Phys. 1994;66:100–6.

    Google Scholar 

  34. ICNIRP. Medical magnetic resonance (MR) procedures: protection of patients. Health Phys. 2004;87:197–216.

    Article  Google Scholar 

  35. ICNIRP. Amendment to the ICNIRP “Statement on medical magnetic resonance (MR) procedures: protection of patients”. Health Phys. 2009;97:259–61.

    Article  Google Scholar 

  36. ICNIRP. Guidelines on limits of exposure to static magnetic fields. Health Phys. 2009;96:504–14.

    Article  Google Scholar 

  37. IEC. 60601-2-33: medical electrical equipment – part 2–33: particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis. 3rd ed. Geneva: International Electrotechnical Commission; 2010.

    Google Scholar 

  38. Kanal E, Barkovich AJ, Bell C, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013;37:501–30.

    Article  PubMed  Google Scholar 

  39. Keevil SF, Gedroyc W, Gowland P, et al. Electromagnetic field exposure limitation and the future of MRI. Br J Radiol. 2005;78:973.

    Article  CAS  PubMed  Google Scholar 

  40. Khan SN, Rapacchi S, Levi DS, et al. Pediatric cardiovascular interventional devices: effect on CMR images at 1.5 and 3 Tesla. J Cardiovasc Magn Reson. 2013;15:54–67.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Klucznik RP, Carrier DA, Pyka R, et al. Placement of a ferromagnetic intracerebral aneurysm clip in a magnetic field with a fatal outcome. Radiology. 1993;187:855–6.

    Article  CAS  PubMed  Google Scholar 

  42. Levine GN, Gomes AS, Arai AE, et al. Safety of magnetic resonance imaging in patients with cardiovascular devices: an American Heart Association scientific statement from the Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology, and the Council on Cardiovascular Radiology and Intervention: endorsed by the American College of Cardiology Foundation, the North American Society for Cardiac Imaging, and the Society for Cardiovascular Magnetic Resonance. Circulation. 2007;116:2878–91.

    Article  PubMed  Google Scholar 

  43. Lobodzinski SS. Recent innovations in the development of magnetic resonance imaging conditional pacemakers and implantable cardioverter-defibrillators. Cardiol J. 2012;19:98–104.

    Article  PubMed  Google Scholar 

  44. Lovsund P, Oberg PA, Nilsson SE. Magneto- and electrophosphenes: a comparative study. Med Biol Eng Comput. 1980;18:758–64.

    Article  CAS  PubMed  Google Scholar 

  45. Lovsund P, Oberg PA, Nilsson SE, et al. Magnetophosphenes: a quantitative analysis of thresholds. Med Biol Eng Comput. 1980;18:326–34.

    Article  CAS  PubMed  Google Scholar 

  46. Lund G, Nelson JD, et al. Tattooing of eyelids: magnetic resonance imaging artifacts. Ophthalmic Surg. 1986;17:550–3.

    CAS  PubMed  Google Scholar 

  47. McNeil Jr DG. M.R.I.’s strong magnets cited in accidents. 2005. New York Times, 19 August 2005.

    Google Scholar 

  48. Medtronic. Medtronic SureScan® pacing systems first to be approved for full body MRI scans without positioning restrictions. Medtronic Web site. 2014. http://newsroom.medtronic.com/phoenix.zhtml?c=251324&p=irol-newsArticle&ID=1892624&highlight. Published 22 Jan 2014.

  49. Merrill RA. Regulation of drugs and devices: an evolution. Health Aff (Millwood). 1994;13:47–69.

    Article  CAS  Google Scholar 

  50. Moratal D, Marti-Bonmati L, Gili J. European Directive 2004/40/EC on workers’ exposure to electromagnetic fields from MRI. Radiologia. 2009;51:30–7 (in Spanish).

    Article  CAS  PubMed  Google Scholar 

  51. Oman CM. Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can J Physiol Pharmacol. 1990;68:294–303.

    Article  CAS  PubMed  Google Scholar 

  52. OSHA standard number 1910.95. Occupational noise exposure. Occupational safety and health administration. https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=standards&p_id=9735. Accessed 18 May 2014.

  53. Patel MR, Albert TS, Kandzari DE, et al. Acute myocardial infarction: safety of cardiac MR imaging after percutaneous revascularization with stents. Radiology. 2006;240:674–80.

    Article  PubMed  Google Scholar 

  54. Pennell DJ, Neubauer S, Cook SA, et al. No evidence that MR causes dsDNA damage. European Heart Journal eLetter, published online July 22, 2013. http://eurheartj.oxfordjournals.org/eletters?page=14&pager_limit=10&days=

  55. Price DL, De Wilde JP, Papadaki AM, et al. Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J Magn Reson Imaging. 2001;13:288–93.

    Article  CAS  PubMed  Google Scholar 

  56. Randolph W. Guidelines for evaluating electromagnetic exposure risk for trials of clinical NMR systems; availability. Fed Regist. 1982;47:11972–3.

    Google Scholar 

  57. Reilly JP. Peripheral nerve stimulation by induced electric currents: exposure to time-varying magnetic fields. Med Biol Eng Comput. 1989;27:101–10.

    Article  CAS  PubMed  Google Scholar 

  58. Roberts DC, Marcelli V, Gillen JS, Carey JP, et al. MRI magnetic field stimulates rotational sensors of the brain. Curr Biol. 2011;21:1635–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Roguin A, Zviman MM, Meininger GR, et al. Modern pacemaker and implantable cardioverter/defibrillator systems can be magnetic resonance imaging safe: in vitro and in vivo assessment of safety and function at 1.5 T. Circulation. 2004;110:475–82.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Saunders RD, Smith H. Safety aspects of NMR clinical imaging. Br Med Bull. 1984;40:148–54.

    CAS  PubMed  Google Scholar 

  61. Schenck JF. Health and physiological effects of human exposure to whole-body four-tesla magnetic fields during MRI. Ann NY Acad Sci. 1992;649:285–301.

    Article  CAS  PubMed  Google Scholar 

  62. Schenck JF. Safety issues in the MR environment. In: Debatin JF, Adam G, editors. Interventional magnetic resonance imaging. Heidelberg: Springer; 1998. p. 95–103.

    Chapter  Google Scholar 

  63. Schenck JF. Physical interactions of static magnetic fields with living tissues. Prog Biophys Mol Biol. 2005;87:185–204.

    Article  PubMed  Google Scholar 

  64. Schenck JF. Safety of strong, static magnetic fields. J Magn Reson Imaging. 2000;12:2–19.

    Article  CAS  PubMed  Google Scholar 

  65. Schenck JF. Safety and sensory aspects of main and gradient fields in MRI. eMagRes. 2013;2:55–66. doi:10.1002/9780470034590.emrstm1324. John Wiley & Sons, Chichester.

    Google Scholar 

  66. Schenck JF, Dumoulin CL, Redington RW, et al. Human exposure to 4.0-Tesla magnetic fields in a whole-body scanner. Med Phys. 1992;19:1089–98.

    Article  CAS  PubMed  Google Scholar 

  67. Schild T, Maksoud WA, Aubert G, et al. The Iseult/Inumac whole body 11.7 T MR magnet R&D program. IEEE Trans Appl Supercond. 2010;20:702–5.

    Article  CAS  Google Scholar 

  68. Setsompop K, Kimmlingen R, Eberlein E, et al. Pushing the limits of in vivo diffusion MRI for the human connectome project. NeuroImage. 2013;80:220–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Shellock FG. MRI safety web site. http://www.MRIsafety.com/. Accessed 18 May 2014.

  70. Shellock FG, Ziarati M, Atkinson D, et al. Determination of gradient magnetic field-induced acoustic noise associated with the use of echo-planar and three-dimensional fast spin echo techniques. J Magn Reson Imaging. 1998;8:1154–7.

    Article  CAS  PubMed  Google Scholar 

  71. Shellock FG, Crues 3rd JV. MR safety and the American College of Radiology white paper. Am J Roentgenol. 2002;178:1349–52.

    Article  Google Scholar 

  72. Shellock FG, Crues 3rd JV. MR procedures: biologic effects, safety, and patient care. Radiology. 2004;232:635–52.

    Article  PubMed  Google Scholar 

  73. Shellock FG, Woods TO, Crues 3rd JV. MR labeling information for implants and devices: explanation of terminology. Radiology. 2009;253:26–30.

    Article  PubMed  Google Scholar 

  74. Shinbane JS, Colletti PM, Shellock FG. Magnetic resonance imaging in patients with cardiac pacemakers: era of “MR Conditional” designs. J Cardiovasc Magn Reson. 2011;13:63–75.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Simi S, Ballardin M, Casella M, et al. Is the genotoxic effect of magnetic resonance negligible? Low persistence of micronucleus frequency in lymphocytes of individuals after cardiac scan. Mutat Res. 2008;645(1–2):39–43.

    Article  CAS  PubMed  Google Scholar 

  76. Sommer T, Maintz D, Schmiedel A, et al. High field MR imaging: magnetic field interactions of aneurysm clips, coronary artery stents, and iliac artery stents with a 3.0 Tesla MR system. Röfo. 2004;176:731–8.

    CAS  PubMed  Google Scholar 

  77. Straumann D, Bockisch CJ. Neurophysiology: vertigo in MRI machines. Curr Biol. 2011;21:R806–7.

    Article  CAS  PubMed  Google Scholar 

  78. Syed MA, Carlson K, Murphy M, et al. Long-term safety of cardiac magnetic resonance imaging performed in the first few days after bare-metal stent implantation. J Magn Reson Imaging. 2006;24:1056–61.

    Article  PubMed  Google Scholar 

  79. Takeda N, Morita M, Horii A, et al. Neural mechanisms of motion sickness. J Med Invest. 2001;48:44–59.

    CAS  PubMed  Google Scholar 

  80. Theysohn JM, Maderwald S, Kraff O, et al. Subjective acceptance of 7 Tesla MRI for human imaging. Magn Reson Mater Phys. 2008;21:63–72.

    Article  Google Scholar 

  81. Wagle WA, Smith M. Tattoo-induced skin burns during MR imaging. AJR Am J Roentgenol. 2000;174:1795.

    Article  CAS  PubMed  Google Scholar 

  82. WHO. Environmental health criteria 232: static fields. Geneva: World Health Organization; 2006.

    Google Scholar 

  83. Wilkoff BL, Bello D, Taborsky M, et al. Magnetic resonance imaging in patients with a pacemaker system designed for the magnetic resonance environment. Heart Rhythm. 2011;8:65–73.

    Article  PubMed  Google Scholar 

  84. Yamaguchi-Sekino S, Sekino M, Ueno S. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields. Magn Reson Med Sci. 2011;10:1–10.

    Article  PubMed  Google Scholar 

  85. Zaremba LA. FDA guidelines for magnetic resonance system safety and patient exposures: current status and future considerations. In: Shellock FG, editor. Magnetic resonance procedures: health effects and safety. Boca Raton: CRC Press; 2001. p. 183–96.

    Google Scholar 

  86. Zhao H, Crozier S, Liu F. Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI. Magn Reson Med. 2002;48:1037–42.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Massimo Lombardi for carefully reading the manuscript and providing useful suggestions.

This chapter is reprinted in part from Schenck [65] (with modifications and permission).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja C. S. Brau PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brau, A.C.S., Hardy, C.J., Schenck, J.F. (2015). MRI Safety. In: Syed, M., Raman, S., Simonetti, O. (eds) Basic Principles of Cardiovascular MRI. Springer, Cham. https://doi.org/10.1007/978-3-319-22141-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22141-0_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22140-3

  • Online ISBN: 978-3-319-22141-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics