Skip to main content

High Field MRI for CMR

  • Chapter
  • 2400 Accesses

Abstract

High field MRI offers the high signal to noise ratio (SNR) that is much needed in CMR. SNR can be traded for speed using parallel imaging, improving the quality of fast imaging applications such as real time cine. SNR also allows for improved spatial resolution, making coronary MRA and vessel wall imaging feasible. The T1 of tissues increases at high field. CMR imaging techniques that exploit T1 differences between tissues such as LGE, first pass perfusion imaging, tagging, and contrast enhanced MR angiography have better T1 contrast at high field. The improved spectral resolution at high field is also potentially advantageous to MR spectroscopy. However, high field MRI also poses certain challenges to CMR applications. Banding artifact in bSSFP and off-resonance artifact in non-Cartesian trajectories get worse at high field due to increased field inhomogeneity. Fat suppression becomes less robust. At 3 T and above, transmit field inhomogeneity can lead to signal inhomogeneity and even local heating. The safety issues related to the concomitant increase in projectile force and SAR need to be considered. Increased sensitivity to susceptibility is unfavorable to EPI imaging. Technical advances such as better shimming, improved RF pulse design and parallel RF transmission systems have helped to alleviate some of the challenges and make high field MRI a practical technology for clinical CMR applications. More research is needed before novel CMR applications such as ASL, BOLD and MR spectroscopy will benefit fully from high field MRI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ugurbil K. The road to functional imaging and ultrahigh fields. Neuroimage. 2012;62(2):726–35. Epub 2012 Feb 8.

    Google Scholar 

  2. Atkinson IC, et al. Safety of human MRI at static fields above the FDA 8 T guideline: sodium imaging at 9.4 T does not affect vital signs or cognitive ability. J Magn Reson Imaging. 2007;26(5):1222–7.

    Article  PubMed  Google Scholar 

  3. Edelstein WA, et al. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med. 1986;3(4):604–18.

    Article  CAS  PubMed  Google Scholar 

  4. Pruessmann KP, et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.

    Article  CAS  PubMed  Google Scholar 

  5. Bottomley PA, et al. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys. 1984;11(4):425–48.

    Article  CAS  PubMed  Google Scholar 

  6. Stanisz GJ, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med. 2005;54(3):507–12.

    Article  PubMed  Google Scholar 

  7. Sharma P, et al. Effect of Gd-DTPA-BMA on blood and myocardial T1 at 1.5T and 3T in humans. J Magn Reson Imaging. 2006;23(3):323–30.

    Article  PubMed  Google Scholar 

  8. Sasaki M, et al. Enhancement effects and relaxivities of gadolinium-DTPA at 1.5 versus 3 Tesla: a phantom study. Magn Reson Med Sci. 2005;4(3):145–9.

    Article  PubMed  Google Scholar 

  9. Nijveldt R, et al. 3.0 T cardiovascular magnetic resonance in patients treated with coronary stenting for myocardial infarction: evaluation of short term safety and image quality. Int J Cardiovasc Imaging. 2008;24(3):283–91.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Gimbel JR. Magnetic resonance imaging of implantable cardiac rhythm devices at 3.0 tesla. Pacing Clin Electrophysiol. 2008;31(7):795–801.

    Article  PubMed  Google Scholar 

  11. Zikria JF, et al. MRI of patients with cardiac pacemakers: a review of the medical literature. AJR Am J Roentgenol. 2011;196(2):390–401.

    Article  PubMed  Google Scholar 

  12. Conolly S, et al. A reduced power selective adiabatic spin-echo pulse sequence. Magn Reson Med. 1991;18(1):28–38.

    Article  CAS  PubMed  Google Scholar 

  13. Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med. 1999;42(2):361–70.

    Article  CAS  PubMed  Google Scholar 

  14. Frauenrath T, et al. Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope. Invest Radiol. 2009;44(9):539–47.

    Google Scholar 

  15. Bernstein MA, Huston 3rd J, Ward HA. Imaging artifacts at 3.0T. J Magn Reson Imaging. 2006;24(4):735–46.

    Article  PubMed  Google Scholar 

  16. Merkle EM, Dale BM. Abdominal MRI at 3.0 T: the basics revisited. AJR Am J Roentgenol. 2006;186(6):1524–32.

    Article  PubMed  Google Scholar 

  17. Krishnamurthy R, et al. Evaluation of a subject specific dual-transmit approach for improving B1 field homogeneity in cardiovascular magnetic resonance at 3T. J Cardiovasc Magn Reson. 2013;15(1):68.

    Google Scholar 

  18. Storey P, et al. R2* imaging of transfusional iron burden at 3T and comparison with 1.5T. J Magn Reson Imaging. 2007;25(3):540–7.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Atalay MK, et al. Cardiac susceptibility artifacts arising from the heart-lung interface. Magn Reson Med. 2001;45(2):341–5.

    Article  CAS  PubMed  Google Scholar 

  20. Haacke EM, et al. Magnetic resonance imaging: physical principles and sequence design. 1st ed. New York: Wiley; 1999.

    Google Scholar 

  21. Kellman P, et al. Multiecho dixon fat and water separation method for detecting fibrofatty infiltration in the myocardium. Magn Reson Med. 2009;61(1):215–21.

    Google Scholar 

  22. Theisen D, et al. High-resolution cine MRI with TGRAPPA for fast assessment of left ventricular function at 3 Tesla. Eur J Radiol. 2013;82(5):e219–24.

    Article  PubMed  Google Scholar 

  23. Pruessmann KP. Parallel imaging at high field strength: synergies and joint potential. Top Magn Reson Imaging. 2004;15(4):237–44.

    Article  PubMed  Google Scholar 

  24. Carr JC, et al. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology. 2001;219(3):828–34.

    Article  CAS  PubMed  Google Scholar 

  25. Reeder SB, et al. In vivo measurement of T 2 and field inhomogeneity maps in the human heart at 1.5 T. Magn Reson Med. 1998;39(6):988–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Noeske R, et al. Human cardiac imaging at 3 T using phased array coils. Magn Reson Med. 2000;44(6):978–82.

    Article  CAS  PubMed  Google Scholar 

  27. Deshpande VS, Shea SM, Li D. Artifact reduction in true-FISP imaging of the coronary arteries by adjusting imaging frequency. Magn Reson Med. 2003;49(5):803–9.

    Article  PubMed  Google Scholar 

  28. Nayak KS, et al. Wideband SSFP: alternating repetition time balanced steady state free precession with increased band spacing. Magn Reson Med. 2007;58(5):931–8.

    Article  PubMed  Google Scholar 

  29. Zhang S, et al. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction. J Cardiovasc Magn Reson. 2010;12:39.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Shin T, et al. Three dimensional first-pass myocardial perfusion imaging at 3T: feasibility study. J Cardiovasc Magn Reson. 2008;10:57.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Kim D, et al. Comparison of the effectiveness of saturation pulses in the heart at 3T. Magn Reson Med. 2008;59(1):209–15.

    Article  PubMed  Google Scholar 

  32. Nezafat R, et al. Spectrally selective B1-insensitive T2 magnetization preparation sequence. Magn Reson Med. 2009;61(6):1326–35.

    Article  PubMed  Google Scholar 

  33. Jenista ER, et al. Motion and flow insensitive adiabatic T(2) -preparation module for cardiac MR imaging at 3 tesla. Magn Reson Med. 2013;70(4):1360–8.

    Google Scholar 

  34. Bi X, Carr JC, Li D. Whole-heart coronary magnetic resonance angiography at 3 Tesla in 5 minutes with slow infusion of Gd-BOPTA, a high-relaxivity clinical contrast agent. Magn Reson Med. 2007;58(1):1–7.

    Article  PubMed  Google Scholar 

  35. Liu X, et al. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Invest Radiol. 2008;43(9):663–8.

    Article  PubMed  Google Scholar 

  36. Yang Q, et al. 3.0T whole-heart coronary magnetic resonance angiography performed with 32-channel cardiac coils: a single-center experience. Circ Cardiovasc Imaging. 2012;5(5):573–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Finn JP, et al. Thorax: low-dose contrast-enhanced three-dimensional MR angiography with subsecond temporal resolution – initial results. Radiology. 2002;224(3):896–904.

    Article  PubMed  Google Scholar 

  38. Habibi R, et al. High-spatial-resolution lower extremity MR angiography at 3.0 T: contrast agent dose comparison study. Radiology. 2008;248(2):680–92. Epub 2008 Jun 23.

    Google Scholar 

  39. Yarnykh VL, et al. Multicontrast black-blood MRI of carotid arteries: comparison between 1.5 and 3 tesla magnetic field strengths. J Magn Reson Imaging. 2006;23(5):691–8.

    Article  PubMed  Google Scholar 

  40. Mugler JPI, Brookeman JR. Efficient spatially-selective single-slab 3D turbo-spin-echo imaging. In: Proc. 11th ISMRM annual meeting. 2004; p. 695.

    Google Scholar 

  41. Mihai G, et al. Assessment of carotid stenosis using three-dimensional T2-weighted dark blood imaging: initial experience. J Magn Reson Imaging. 2012;35(2):449–55. Epub 2011 Dec 6.

    Google Scholar 

  42. Chung YC, et al. High resolution 3D intracranial imaging at 3.0 T. In: Proc. 18th ISMRM annual meeting. 2010; p. 2255.

    Google Scholar 

  43. Qiao Y, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging. 2011;34(1):22–30.

    Google Scholar 

  44. Troalen T, et al. Cine-ASL: a steady-pulsed arterial spin labeling method for myocardial perfusion mapping in mice. Part I. Experimental study. Magn Reson Med. 2013;70(5):1389–98.

    Google Scholar 

  45. Capron T, et al. Cine-ASL: a steady-pulsed arterial spin labeling method for myocardial perfusion mapping in mice. Part II. Theoretical model and sensitivity optimization. Magn Reson Med. 2013;70(5):1399–408.

    Article  PubMed  Google Scholar 

  46. An J, Voorhees A, Chen Q. SSFP arterial spin labeling myocardial perfusion imaging at 3 Tesla. In: Proc. 13th ISMRM Annu Meet. 2005; p. 253.

    Google Scholar 

  47. Zun Z, Wong EC, Nayak KS. Assessment of myocardial blood flow (MBF) in humans using arterial spin labeling (ASL): feasibility and noise analysis. Magn Reson Med. 2009;62(4):975–83.

    Article  PubMed  Google Scholar 

  48. Zun Z, et al. Arterial spin labeled CMR detects clinically relevant increase in myocardial blood flow with vasodilation. JACC Cardiovasc Imaging. 2011;4(12):1253–61.

    Article  PubMed  Google Scholar 

  49. Epstein FH, Meyer CH. Myocardial perfusion using arterial spin labeling CMR: promise and challenges. JACC Cardiovasc Imaging. 2011;4(12):1262–4.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Wright KB, et al. Assessment of regional differences in myocardial blood flow using T2-weighted 3D BOLD imaging. Magn Reson Med. 2001;46(3):573–8.

    Article  CAS  PubMed  Google Scholar 

  51. Shea SM, et al. T2-prepared steady-state free precession blood oxygen level-dependent MR imaging of myocardial perfusion in a dog stenosis model. Radiology. 2005;236(2):503–9.

    Article  PubMed  Google Scholar 

  52. Dharmakumar R, et al. Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0 T: theory and experimental evaluation in canines. J Magn Reson Imaging. 2008;27(5):1037–45.

    Article  PubMed  Google Scholar 

  53. Arumana JM, Li D, Dharmakumar R. Deriving blood-oxygen-level-dependent contrast in MRI with T2-weighted, T2-prepared and phase-cycled SSFP methods: theory and experiment. Magn Reson Med. 2008;59(3):561–70.

    Google Scholar 

  54. Venkatesh BA, et al. MR proton spectroscopy for myocardial lipid deposition quantification: a quantitative comparison between 1.5T and 3T. J Magn Reson Imaging. 2012;36(5):1222–30.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Tyler DJ, et al. A comparison of cardiac (31)P MRS at 1.5 and 3 T. NMR Biomed. 2008;21(8):793–8.

    Article  CAS  PubMed  Google Scholar 

  56. Shivu GN, et al. (31)P magnetic resonance spectroscopy to measure in vivo cardiac energetics in normal myocardium and hypertrophic cardiomyopathy: experiences at 3T. Eur J Radiol. 2010;73(2):255–9.

    Article  PubMed  Google Scholar 

  57. Hudsmith LE, Neubauer S. Magnetic resonance spectroscopy in myocardial disease. JACC Cardiovasc Imaging. 2009;2(1):87–96.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiu-Cho Chung PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chung, YC. (2015). High Field MRI for CMR. In: Syed, M., Raman, S., Simonetti, O. (eds) Basic Principles of Cardiovascular MRI. Springer, Cham. https://doi.org/10.1007/978-3-319-22141-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22141-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22140-3

  • Online ISBN: 978-3-319-22141-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics