Skip to main content

Spatial, Temporal Resolution and Signal-to-Noise Ratio

  • Chapter
Basic Principles of Cardiovascular MRI

Abstract

Spatial resolution and temporal resolution refer to the smallest distance and temporal change that can be differentiated. Signal-to-noise ratio (SNR) is a reflection of signal intensity with reference to the background noise. In cardiac MR imaging, it is desirable to acquire images that have adequate spatial resolution to resolve fine structures in the heart, sufficient temporal resolution to visualize cardiac motion, and high SNR for good image quality. This chapter first covers spatial resolution in MRI, its relationship to k-space, the difference between nominal and apparent spatial resolution, and factors that affect spatial resolution. The chapter then discusses temporal resolution and image acquisition methods that can be used to change/improve temporal resolution, including view-sharing, segmented imaging, and real-time imaging. Finally, the chapter covers SNR and sources of noise, factors affecting SNR, how to measure SNR, and the tradeoffs between SNR, spatial resolution and temporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For some applications, the reference frame may be acquired during or at the end of the actual acquisition.

References

  1. Harris FJ. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE. 1978;66:51–83.

    Article  Google Scholar 

  2. Noll DC, Nishimura GD, Macovski A. Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imaging. 1991;10(2):154–63.

    Article  CAS  PubMed  Google Scholar 

  3. Lindskog ED, Haacke EM, Lin W. A fast, iterative, partial-fourier technique capable of local phase recovery. J Magn Reson. 1991;92:126–45.

    Google Scholar 

  4. Wikipedia. n.d. http://en.wikipedia.org/wiki/Temporal_resolution. Retrieved on Apr 2014.

  5. Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990;14:68–78.

    Article  CAS  PubMed  Google Scholar 

  6. Kellman P, Chefd’hotel C, Lorenz CH, Mancini C, Arai AE, McVeigh ER. High-spatial and temporal resolution cardiac cine MRI from retrospective reconstruction of data acquired in real time using motion correction and resorting. Magn Reson Med. 2009;62:1557–64.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Kim SG, Richter W, Ugurbil K. Limitations of temporal resolution in functional MRI. Magn Reson Med. 1997;37:631–6.

    Article  CAS  PubMed  Google Scholar 

  8. Thompson RB, McVeigh ER. High temporal resolution phase contrast MRI with multiecho acquisitions. Magn Reson Med. 2002;47:499–512.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson. 2013;15:91.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Foo TK, Bernstein MA, Aisen AM, Hernandez RJ, Collick BD, Bernstein T. Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology. 1994;195:471–8.

    Article  Google Scholar 

  11. van Vaals JJ, Brummer ME, Dixon WT, Tuithof HH, Engels H, Nelson RC, Gerety BM, Chezmar JL, den Boer JA. “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging. 1993;3:671–5.

    Article  PubMed  Google Scholar 

  12. Doyle M, Walsh EG, Blackwell GG, Pohost GM. Block regional interpolation scheme for k-space (BRISK): a rapid cardiac imaging technique. Magn Reson Med. 1995;33:163–70.

    Article  CAS  PubMed  Google Scholar 

  13. Markl M, Hennig J. Phase contrast MRI with improved temporal resolution by view sharing: k-space related velocity mapping properties. Magn Reson Imaging. 2001;19:669–76.

    Article  CAS  PubMed  Google Scholar 

  14. Lin HY, Bender JA, Chung YC, Hinton AM, Pennell ML, Whitehead KK, Raman SV, Simonetti OP. Shared velocity encoding: a method to improve the temporal resolution of phase-contrast velocity measurements. Magn Reson Med. 2012;68:703–10.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Parrish T, Hu X. Continuous update with random encoding (CURE): a new strategy for dynamic imaging. Magn Reson Med. 1995;33:326–36.

    Article  CAS  PubMed  Google Scholar 

  16. Lim RP, Shapiro M, Wang EY, Law M, Babb JS, Rueff LE, Jacob JS, Kim S, Carson RH, Mulholland TP, Laub G, Hecht EM. 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced bolus-chase MRA and 3D time-of-flight MRA. Am J Neuroradiol. 2008;29:1847–54.

    Article  CAS  PubMed  Google Scholar 

  17. Spraggins TA. Simulation of spatial and contrast distortions in keyhole imaging. Magn Reson Med. 1994;31:320–2.

    Article  CAS  PubMed  Google Scholar 

  18. Webb AG, Liang ZP, Magin RL, Lauterbur PC. Applications of reduced-encoding MR imaging with generalized-series reconstruction (RIGR). J Magn Reson Imaging. 1993;3:925–8.

    Article  CAS  PubMed  Google Scholar 

  19. Bernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequences. Burlington: Elsevier/Academic; 2004.

    Google Scholar 

  20. Atkinson DJ, Edelman RR. Cineangiography of the heart in a single breath hold with a segmented turbo-FLASH sequence. Radiology. 1991;178:357–60.

    Article  CAS  PubMed  Google Scholar 

  21. Pruessmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med. 2001;46:638–51.

    Article  CAS  PubMed  Google Scholar 

  22. Seiberlich N, Ehses P, Duerk J, Gilkeson R, Griswold MA. Improved radial GRAPPA calibration for real-time free-breathing cardiac imaging. Magn Reson Med. 2011;65:492–505.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Seiberlich N, Lee G, Ehses P, Duerk JL, Gilkeson R, Griswold M. Improved temporal resolution in cardiac imaging using through-time spiral GRAPPA. Magn Reson Med. 2011;66(6):1682–8.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Wild JM, Paley MNJ, Kasuboski L, Swift A, Fichele S, Woodhouse N, et al. Dynamic radial projection MRI of inhaled hyperpolarized 3He gas. Magn Reson Med. 2003;49:991–7.

    Article  PubMed  Google Scholar 

  25. Nayak KS, Hargreaves BA, Hu BS, Nishimura DG, Pauly JM, Meyer CH. Spiral balanced steady-state free precession cardiac imaging. Magn Reson Med. 2005;53:1468–73.

    Article  PubMed  Google Scholar 

  26. Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging. 2004;15:223–36.

    Article  PubMed  Google Scholar 

  27. Sørensen TS, Schaeffter T, Noe KØ, Hansen MS. Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware. IEEE Trans Med Imaging. 2008;27:538–47.

    Article  PubMed  Google Scholar 

  28. Sørensen TS, Atkinson D, Schaeffter T, Hansen MS. Real-time reconstruction of sensitivity encoded radial magnetic resonance imaging using a graphics processing unit. IEEE Trans Med Imaging. 2009;28:1974–85.

    Article  PubMed  Google Scholar 

  29. Saybasili H, Derbyshire JA, Kellman P, Griswold MA, Ozturk C, Lederman RJ, Seiberlich N. RT-GROG: parallelized self-calibrating GROG for real-time MRI. Magn Reson Med. 2010;64:306–12.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Saybasili H, Herzka DA, Seiberlich N, Griswold MA. Real-time imaging with radial GRAPPA: implementation on a heterogeneous architecture for low-latency reconstructions. Magn Reson Imaging. 2014;32:747–58.

    Google Scholar 

  31. Lustig M, Pauly J. SPIRIT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med. 2010;64:457–71.

    PubMed Central  PubMed  Google Scholar 

  32. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95.

    Article  PubMed  Google Scholar 

  33. Breuer FA, Kellman P, Griswold MA, Jakob PM. Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med. 2005;53:981–5.

    Article  PubMed  Google Scholar 

  34. Saybasili H, Kellman P, Griswold MA, Derbyshire JA, Guttman MA. HTGRAPPA: real-time B1-weighted image domain TGRAPPA reconstruction. Magn Reson Med. 2009;61:1425–33.

    Article  PubMed  Google Scholar 

  35. Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med. 2001;45:846–52.

    Article  CAS  PubMed  Google Scholar 

  36. Saybasili H, McNeal G, Zuehlsdorff S, Schmidt M, Kellman P, Zenge M. Temporal interpolation of real-time CINE images for ventricular function assessment. Proceedings of SCMR, New Orleans; 2014.

    Google Scholar 

  37. Hoult D, Lauterbur PC. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson. 1979;34:425–33.

    CAS  Google Scholar 

  38. Hayes CE, Axel L. Noise performance of surface coils for magnetic resonance imaging at 1.5 T. Med Phys. 1985;12:604–7.

    Article  CAS  PubMed  Google Scholar 

  39. Macovski A. Noise in MRI. Magn Reson Med. 1996;36:494–7. Henkelman RM. Measurement of signal intensities in the presence of noise in MR images. Med Phys. 1985;12:232–3.

    Article  CAS  PubMed  Google Scholar 

  40. Constantinides CD, Atalar E, McVeigh ER. Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med. 1997;38:852–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Sijbers J, den Dekker AJ, Van Audekerke J, Verhoye M, Van Dyck D. Estimation of the noise in magnitude MR images. Magn Reson Imaging. 1998;16:87–90.

    Article  CAS  PubMed  Google Scholar 

  42. De Wilde JP, Lunt JA, Straughan K. Information in magnetic resonance images: evaluation of signal, noise and contrast. Med Biol Eng Comput. 1997;35:259–65.

    Article  PubMed  Google Scholar 

  43. Kellman P, McVeigh ER. Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med. 2005;54:1439–47.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Jin PhD .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Video 4.1

(MP4 77 kb)

Video 4.2

(MP4 77 kb)

Video 4.3

(MP4 77 kb)

Video 4.4

(MP4 77 kb)

Video 4.5

(MP4 77 kb)

Video 4.6

(MP4 77 kb)

Video 4.7

(MP4 77 kb)

Video 4.8

(MP4 77 kb)

Video 4.9

(WMV 982 kb)

Video 4.10

(WMV 1389 kb)

Video 4.11

(WMV 1829 kb)

Video 4.12

(WMV 2204 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jin, N., Saybasili, H., Bi, X. (2015). Spatial, Temporal Resolution and Signal-to-Noise Ratio. In: Syed, M., Raman, S., Simonetti, O. (eds) Basic Principles of Cardiovascular MRI. Springer, Cham. https://doi.org/10.1007/978-3-319-22141-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22141-0_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22140-3

  • Online ISBN: 978-3-319-22141-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics