Skip to main content

Abstract

The Development of Contrast Enhanced Magnetic Resonance Angiography represents a major success in the development of diagnostic imaging. In the short time since its inception CE-MRA, has replaced the more invasive X-ray angiography as the front line-diagnostic imaging modality. The prevalence of vascular disease in developed countries and the aging of the population has made CE-MRA a multi-billion dollar market. We discuss many of the newer approaches to CE-MRA that are reducing the scan time to allow for higher resolution scans with improved ease of use and diagnostic accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prince MR, et al. Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging. 1993;3(6):877–81.

    Article  CAS  PubMed  Google Scholar 

  2. Earls JP, et al. Breath-hold single-dose gadolinium-enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology. 1996;201(3):705–10.

    Article  CAS  PubMed  Google Scholar 

  3. Maki JH, et al. The effects of time varying intravascular signal intensity and k-space acquisition order on three-dimensional MR angiography image quality. J Magn Reson Imaging. 1996;6(4):642–51.

    Article  CAS  PubMed  Google Scholar 

  4. Wilman AH, et al. Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiology. 1997;205(1):137–46.

    Article  CAS  PubMed  Google Scholar 

  5. Foo TK, et al. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiology. 1997;203(1):275–80.

    Article  CAS  PubMed  Google Scholar 

  6. Ho KY, et al. Peripheral vascular tree stenoses: evaluation with moving-bed infusion-tracking MR angiography. Radiology. 1998;206(3):683–92.

    Article  CAS  PubMed  Google Scholar 

  7. Hany TF, et al. Contrast-enhanced magnetic resonance angiography of the renal arteries. Original investigation. Invest Radiol. 1998;33(9):653–9.

    Article  CAS  PubMed  Google Scholar 

  8. Meaney JF, et al. Stepping-table gadolinium-enhanced digital subtraction MR angiography of the aorta and lower extremity arteries: preliminary experience. Radiology. 1999;211(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  9. Korosec FR, et al. Contrast-enhanced MR angiography of the carotid bifurcation. J Magn Reson Imaging. 1999;10(3):317–25.

    Article  CAS  PubMed  Google Scholar 

  10. Kruger DG, et al. Continuously moving table data acquisition method for long FOV contrast-enhanced MRA and whole-body MRI. Magn Reson Med. 2002;47(2):224–31.

    Article  PubMed  Google Scholar 

  11. Finn JP, et al. Thorax: low-dose contrast-enhanced three-dimensional MR angiography with subsecond temporal resolution – initial results. Radiology. 2002;224(3):896–904.

    Article  PubMed  Google Scholar 

  12. Carr JC, et al. Preoperative evaluation of the entire hepatic vasculature in living liver donors with use of contrast-enhanced MR angiography and true fast imaging with steady-state precession. J Vasc Interv Radiol. 2003;14(4):441–9.

    Article  PubMed  Google Scholar 

  13. Henness S, Keating GM. Gadofosveset. Drugs. 2006;66(6):851–7.

    Article  CAS  PubMed  Google Scholar 

  14. Eldredge HB, et al. Species dependence on plasma protein binding and relaxivity of the gadolinium-based MRI contrast agent MS-325. Invest Radiol. 2006;41(3):229–43.

    Article  CAS  PubMed  Google Scholar 

  15. Kraitchman DL, et al. MRI detection of myocardial perfusion defects due to coronary artery stenosis with MS-325. J Magn Reson Imaging. 2002;15(2):149–58.

    Article  PubMed  Google Scholar 

  16. Goyen M. Gadofosveset-enhanced magnetic resonance angiography. Vasc Health Risk Manag. 2008;4(1):1–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Grist TM, et al. Steady-state and dynamic MR angiography with MS-325: initial experience in humans. Radiology. 1998;207(2):539–44.

    Article  CAS  PubMed  Google Scholar 

  18. Cashen TA, et al. 4D radial contrast-enhanced MR angiography with sliding subtraction. Magn Reson Med. 2007;58(5):962–72.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Vakil P, et al. Magnetization spoiling in radial FLASH contrast-enhanced MR digital subtraction angiography. J Magn Reson Imaging. 2012;36(1):249–58.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Maki JH, Chenevert TL, Prince MR. Three-dimensional contrast-enhanced MR angiography. Top Magn Reson Imaging. 1996;8(6):322–44.

    Article  CAS  PubMed  Google Scholar 

  21. Bernstein M, King K, Zhou X. Handbook of MRI pulse sequences. Amsterdam/Boston: Elsevier Academic Press; 2004.

    Google Scholar 

  22. Edelman RR, et al. Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: technical considerations and clinical feasibility. Magn Reson Med. 2010;63(4):951–8.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hurst GC, et al. Signal-to-noise, resolution, and bias function analysis of asymmetric sampling with zero-padded magnitude FT reconstruction. Magn Reson Med. 1992;27(2):247–69.

    Article  CAS  PubMed  Google Scholar 

  24. Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imaging. 1991;10(2):154–63.

    Article  CAS  PubMed  Google Scholar 

  25. van Vaals JJ, et al. “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging. 1993;3(4):671–5.

    Article  PubMed  Google Scholar 

  26. Jones RA, et al. K-space substitution: a novel dynamic imaging technique. Magn Reson Med. 1993;29(6):830–4.

    Article  CAS  PubMed  Google Scholar 

  27. Korosec FR, et al. Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med. 1996;36(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  28. Carroll TJ. The emergence of time-resolved contrast-enhanced MR imaging for intracranial angiography. AJNR Am J Neuroradiol. 2002;23(3):346–8.

    PubMed  Google Scholar 

  29. Griswold MA, et al. Partially parallel imaging with localized sensitivities (PILS). Magn Reson Med. 2000;44(4):602–9.

    Article  CAS  PubMed  Google Scholar 

  30. Pruessmann KP, et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.

    Article  CAS  PubMed  Google Scholar 

  31. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38(4):591–603.

    Article  CAS  PubMed  Google Scholar 

  32. Jakob PM, et al. AUTO-SMASH: a self-calibrating technique for SMASH imaging. SiMultaneous Acquisition of Spatial Harmonics. MAGMA. 1998;7(1):42–54.

    Article  CAS  PubMed  Google Scholar 

  33. Griswold MA, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202–10.

    Article  PubMed  Google Scholar 

  34. Edelstein WA, et al. Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol. 1980;25(4):751–6.

    Article  CAS  PubMed  Google Scholar 

  35. Lauterbur PC. Progress in n.m.r. zeugmatography imaging. Philos Trans R Soc Lond B Biol Sci. 1980;289(1037):483–7.

    Article  CAS  PubMed  Google Scholar 

  36. Scheffler K, Hennig J. Reduced circular field-of-view imaging. Magn Reson Med. 1998;40(3):474–80.

    Article  CAS  PubMed  Google Scholar 

  37. Glover GH, Pauly JM. Projection reconstruction techniques for reduction of motion effects in MRI. Magn Reson Med. 1992;28(2):275–89.

    Article  CAS  PubMed  Google Scholar 

  38. Peters DC, et al. Undersampled projection reconstruction applied to MR angiography. Magn Reson Med. 2000;43(1):91–101.

    Article  CAS  PubMed  Google Scholar 

  39. Jackson JI, et al. Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. IEEE Trans Med Imaging. 1991;10(3):473–8.

    Article  CAS  PubMed  Google Scholar 

  40. Zwart NR, Johnson KO, Pipe JG. Efficient sample density estimation by combining gridding and an optimized kernel. Magn Reson Med. 2012;67(3):701–10.

    Article  PubMed  Google Scholar 

  41. Riederer SJ, et al. MR fluoroscopy: technical feasibility. Magn Reson Med. 1988;8(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  42. Lauzon ML, Rutt BK. Polar sampling in k-space: reconstruction effects. Magn Reson Med. 1998;40(5):769–82.

    Article  CAS  PubMed  Google Scholar 

  43. Peters DC, Derbyshire JA, McVeigh ER. Centering the projection reconstruction trajectory: reducing gradient delay errors. Magn Reson Med. 2003;50(1):1–6.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Lee KJ, et al. Method of generalized projections algorithm for image-based reduction of artifacts in radial imaging. Magn Reson Med. 2005;54(1):246–50.

    Article  CAS  PubMed  Google Scholar 

  45. Mistretta CA, et al. Highly constrained backprojection for time-resolved MRI. Magn Reson Med. 2006;55(1):30–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Eddleman CS, et al. 4D radial acquisition contrast-enhanced MR angiography and intracranial arteriovenous malformations: quickly approaching digital subtraction angiography. Stroke. 2009;40(8):2749–53.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Carroll PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vakil, P., Bane, O., Cantrell, C.G., Carroll, T.J. (2015). Contrast-Enhanced MR Angiography. In: Syed, M., Raman, S., Simonetti, O. (eds) Basic Principles of Cardiovascular MRI. Springer, Cham. https://doi.org/10.1007/978-3-319-22141-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22141-0_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22140-3

  • Online ISBN: 978-3-319-22141-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics